No Arabic abstract
In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alphas the scalar curvature does not drop to zero at the star surface (as in General Relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value alpha increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing alphas. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter $alpha$ and the gravitational mass weakly depend upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison to General Relativity for stars with masses close to maximal, whereas for intermediate masses around 1.4-1.6 solar masses, the radius of star depends upon alpha very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R^2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of alpha our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci scalar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor and $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmology, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar coupling $Q$ with matter works to change the star radius in comparison to General Relativity, while the maximum allowed mass of neutron stars is hardly modified for both SLy and FPS equations of state. In Brans-Dicke theory with the massive potential $V(phi)=m^2 phi^2/2$, where $m^2$ is a positive constant, we show the difficulty of realizing neutron star solutions with a stable field profile due to the existence of an exponentially growing mode outside the star. As in $f(R)$ gravity with the $R^2$ term, this property is related to the requirement of extra boundary conditions of the field at the surface of star. For the self-coupling potential $V(phi)=lambda phi^4/4$, this problem can be circumvented by the fact that the second derivative $V_{,phi phi}=3lambdaphi^2$ approaches 0 at spatial infinity. In this case, we numerically show the existence of neutron star solutions for both SLy and FPS equations of state and discuss how the mass-radius relation is modified as compared to General Relativity.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.