No Arabic abstract
The self-consistent field theory (SCFT) is a powerful framework for the study of the phase behavior and structural properties of many-body systems. In particular, polymeric SCFT has been successfully applied to inhomogeneous polymeric systems such as polymer blends and block copolymer melts. The polymeric SCFT is commonly derived using field-theoretical techniques. Here we provide an alternative derivation of the SCFT equations and SCFT free energy functional using a variational principle. Numerical methods of solving the SCFT equations and applications of the SCFT are also briefly introduced.
A self-consistent field theory study of lock and key type interactions between sterically stabilized colloids in polymer solution is performed. Both the key particle and the lock cavity are assumed to have cylindrical shape, and their surfaces are uniformly grafted with polymer chains. The lock-key potential of mean force is computed for various model parameters, such as length of free and grafted chains, lock and key size matching, free chain volume fraction, grafting density, and various enthalpic interactions present in the system. The lock-key interaction is found to be highly tunable, which is important in the rapidly developing field of particle self-assembly.
We provide a rigorous construction of Markovian master equations for a wide class of quantum systems that encompass quadratic models of finite size, linearly coupled to an environment modeled by a set of independent thermal baths. Our theory can be applied for both fermionic and bosonic models in any number of physical dimensions, and does not require any particular spatial symmetry of the global system. We show that, for non-degenerate systems under a full secular approximation, the effective Lindblad operators are the normal modes of the system, with coupling constants that explicitly depend on the transformation matrices that diagonalize the Hamiltonian. Both the dynamics and the steady-state (guaranteed to be unique) properties can be obtained with a polynomial amount of resources in the system size. We also address the particle and energy current flowing through the system in a minimal two-bath scheme and find that they hold the structure of Landauers formula, being thermodynamically consistent.
The Derjaguin approximation (DA) relates the force between curved surfaces to the interaction free energy between parallel planes. It is typically derived by considering the direct interaction between the bodies involved, thus treating the effect of an intervening solvent implicitly by a rescaling of the corresponding Hamaker constant. Here, we provide a generalization of DA to the case of a molecular medium between the bodies, as is the case in most applications. The derivation is based on an explicit statistical-mechanical treatment of the contribution to the interaction force from a molecular solvent using a general expression for intermolecular and molecule-surface interactions. Starting from an exact expression for the force, DA is arrived at by a series of well-defined approximations. Our results show that DA remains valid in a molecular solvent as long as (i) the surface-molecule interactions are of much shorter range than the radius R of the sphere and (ii) the density correlation length in the solvent is smaller than R. We then extend our analysis to the case where a phase transition occurs between the surfaces, which cannot easily be covered using a statistical-mechanical formalism due to the discontinuous change in the density of the medium. Instead using a continuum thermodynamic description, we show that this phase transformation induces an attractive force between the bodies, and that the force between curved surfaces can be related to the free energy in the corresponding planar case, in accordance with DA.
Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such surface tension, bending moduli and line tension. Understanding how the molecular property of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes.
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space-or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Huckel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory, and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.