Do you want to publish a course? Click here

Author Impact: Evaluations, Predictions, and Challenges

269   0   0.0 ( 0 )
 Added by Xiaomei Bai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Author impact evaluation and prediction play a key role in determining rewards, funding, and promotion. In this paper, we first introduce the background of author impact evaluation and prediction. Then, we review recent developments of author impact evaluation, including data collection, data pre-processing, data analysis, feature selection, algorithm design, and algorithm evaluation. Thirdly, we provide an in-depth literature review on author impact predictive models and common evaluation metrics. Finally, we look into the representative research issues, including author impact inflation, unified evaluation standards, academic success gene, identification of the origins of hot streaks, and higher-order academic networks analysis. This paper should help the researchers obtain a broader understanding in author impact evaluation and prediction, and provides future research directions.



rate research

Read More

The characteristics of the $h$-index in the field of condensed matter physics are studied using high-quality data from ResearcherID. The results are examined in terms of theoretical descriptions of the $h$-index overall dependence on a researchers total number of published papers, and total number of citations. In particular, the models by Hirsch, Egghe and Rousseau, as well as by Glanzel and Schubert are examined. Special emphasis is placed on the deviations from such statistical descriptions, and it is argued that the deviation of a particular researchers $h$ value from the Egghe-Rouseau models prediction can be used as a supplementary measure of impact. A corresponding analysis with similar results is performed using the multi-author $h_m$-index.
The association between productivity and impact of scientific production is a long-standing debate in science that remains controversial and poorly understood. Here we present a large-scale analysis of the association between yearly publication numbers and average journal-impact metrics for the Brazilian scientific elite. We find this association to be discipline-specific, career-age dependent, and similar among researchers with outlier and non-outlier performance. Outlier researchers either outperform in productivity or journal prestige, but they rarely do so in both categories. Non-outliers also follow this trend and display negative correlations between productivity and journal prestige but with discipline-dependent intensity. Our research indicates that academics are averse to simultaneous changes in their productivity and journal-prestige levels over consecutive career years. We also find that career patterns concerning productivity and journal prestige are discipline-specific, having in common a raise of productivity with career age for most disciplines and a higher chance of outperforming in journal impact during early career stages.
Throughout history, a relatively small number of individuals have made a profound and lasting impact on science and society. Despite long-standing, multi-disciplinary interests in understanding careers of elite scientists, there have been limited attempts for a quantitative, career-level analysis. Here, we leverage a comprehensive dataset we assembled, allowing us to trace the entire career histories of nearly all Nobel laureates in physics, chemistry, and physiology or medicine over the past century. We find that, although Nobel laureates were energetic producers from the outset, producing works that garner unusually high impact, their careers before winning the prize follow relatively similar patterns as ordinary scientists, being characterized by hot streaks and increasing reliance on collaborations. We also uncovered notable variations along their careers, often associated with the Nobel prize, including shifting coauthorship structure in the prize-winning work, and a significant but temporary dip in the impact of work they produce after winning the Nobel. Together, these results document quantitative patterns governing the careers of scientific elites, offering an empirical basis for a deeper understanding of the hallmarks of exceptional careers in science.
Researchers affiliated with multiple institutions are increasingly seen in current scientific environment. In this paper we systematically analyze the multi-affiliated authorship and its effect on citation impact, with focus on the scientific output of research collaboration. By considering the nationality of each institutions, we further differentiate the national multi-affiliated authorship and international multi-affiliated authorship and reveal their different patterns across disciplines and countries. We observe a large share of publications with multi-affiliated authorship (45.6%) in research collaboration, with a larger share of publications containing national multi-affiliated authorship in medicine related and biology related disciplines, and a larger share of publications containing international type in Space Science, Physics and Geosciences. To a country-based view, we distinguish between domestic and foreign multi-affiliated authorship to a specific country. Taking G7 and BRICS countries as samples from different S&T level, we find that the domestic national multi-affiliated authorship relate to more on citation impact for most disciplines of G7 countries, while domestic international multi-affiliated authorships are more positively influential for most BRICS countries.
119 - Xiaomei Bai , Fuli Zhang , Jin Ni 2020
This paper investigates the impact of institutes and papers over time based on the heterogeneous institution-citation network. A new model, IPRank, is introduced to measure the impact of institution and paper simultaneously. This model utilises the heterogeneous structural measure method to unveil the impact of institution and paper, reflecting the effects of citation, institution, and structural measure. To evaluate the performance, the model first constructs a heterogeneous institution-citation network based on the American Physical Society (APS) dataset. Subsequently, PageRank is used to quantify the impact of institution and paper. Finally, impacts of same institution are merged, and the ranking of institutions and papers is calculated. Experimental results show that the IPRank model better identifies universities that host Nobel Prize laureates, demonstrating that the proposed technique well reflects impactful research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا