Do you want to publish a course? Click here

Holdout SGD: Byzantine Tolerant Federated Learning

106   0   0.0 ( 0 )
 Added by Yehuda Afek Prof
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This work presents a new distributed Byzantine tolerant federated learning algorithm, HoldOut SGD, for Stochastic Gradient Descent (SGD) optimization. HoldOut SGD uses the well known machine learning technique of holdout estimation, in a distributed fashion, in order to select parameter updates that are likely to lead to models with low loss values. This makes it more effective at discarding Byzantine workers inputs than existing methods that eliminate outliers in the parameter-space of the learned model. HoldOut SGD first randomly selects a set of workers that use their private data in order to propose gradient updates. Next, a voting committee of workers is randomly selected, and each voter uses its private data as holdout data, in order to select the best proposals via a voting scheme. We propose two possible mechanisms for the coordination of workers in the distributed computation of HoldOut SGD. The first uses a truthful central server and corresponds to the typical setting of current federated learning. The second is fully distributed and requires no central server, paving the way to fully decentralized federated learning. The fully distributed version implements HoldOut SGD via ideas from the blockchain domain, and specifically the Algorand committee selection and consensus processes. We provide formal guarantees for the HoldOut SGD process in terms of its convergence to the optimal model, and its level of resilience to the fraction of Byzantine workers. Empirical evaluation shows that HoldOut SGD is Byzantine-resilient and efficiently converges to an effectual model for deep-learning tasks, as long as the total number of participating workers is large and the fraction of Byzantine workers is less than half (<1/3 for the fully distributed variant).



rate research

Read More

The growth of data, the need for scalability and the complexity of models used in modern machine learning calls for distributed implementations. Yet, as of today, distributed machine learning frameworks have largely ignored the possibility of arbitrary (i.e., Byzantine) failures. In this paper, we study the robustness to Byzantine failures at the fundamental level of stochastic gradient descent (SGD), the heart of most machine learning algorithms. Assuming a set of $n$ workers, up to $f$ of them being Byzantine, we ask how robust can SGD be, without limiting the dimension, nor the size of the parameter space. We first show that no gradient descent update rule based on a linear combination of the vectors proposed by the workers (i.e, current approaches) tolerates a single Byzantine failure. We then formulate a resilience property of the update rule capturing the basic requirements to guarantee convergence despite $f$ Byzantine workers. We finally propose Krum, an update rule that satisfies the resilience property aforementioned. For a $d$-dimensional learning problem, the time complexity of Krum is $O(n^2 cdot (d + log n))$.
For mitigating Byzantine behaviors in federated learning (FL), most state-of-the-art approaches, such as Bulyan, tend to leverage the similarity of updates from the benign clients. However, in many practical FL scenarios, data is non-IID across clients, thus the updates received from even the benign clients are quite dissimilar. Hence, using similarity based methods result in wasted opportunities to train a model from interesting non-IID data, and also slower model convergence. We propose DiverseFL to overcome this challenge in heterogeneous data distribution settings. Rather than comparing each clients update with other client updates to detect Byzantine clients, DiverseFL compares each clients update with a guiding update of that client. Any client whose update diverges from its associated guiding update is then tagged as a Byzantine node. The FL server in DiverseFL computes the guiding update in every round for each client over a small sample of the clients local data that is received only once before start of the training. However, sharing even a small sample of clients data with the FL server can compromise clients data privacy needs. To tackle this challenge, DiverseFL creates a Trusted Execution Environment (TEE)-based enclave to receive each clients sample and to compute its guiding updates. TEE provides a hardware assisted verification and attestation to each client that its data is not leaked outside of TEE. Through experiments involving neural networks, benchmark datasets and popular Byzantine attacks, we demonstrate that DiverseFL not only performs Byzantine mitigation quite effectively, it also almost matches the performance of OracleSGD, where the server only aggregates the updates from the benign clients.
129 - Silvia Bonomi 2015
This paper proposes the first implementation of an atomic storage tolerant to mobile Byzantine agents. Our implementation is designed for the round-based synchronous model where the set of Byzantine nodes changes from round to round. In this model we explore the feasibility of multi-writer multi-reader atomic register prone to various mobile Byzantine behaviors. We prove upper and lower bounds for solving the atomic storage in all the explored models. Our results, significantly different from the static case, advocate for a deeper study of the main building blocks of distributed computing while the system is prone to mobile Byzantine failures.
Federated learning has attracted attention in recent years for collaboratively training data on distributed devices with privacy-preservation. The limited network capacity of mobile and IoT devices has been seen as one of the major challenges for cross-device federated learning. Recent solutions have been focusing on threshold-based client selection schemes to guarantee the communication efficiency. However, we find this approach can cause biased client selection and results in deteriorated performance. Moreover, we find that the challenge of network limit may be overstated in some cases and the packet loss is not always harmful. In this paper, we explore the loss tolerant federated learning (LT-FL) in terms of aggregation, fairness, and personalization. We use ThrowRightAway (TRA) to accelerate the data uploading for low-bandwidth-devices by intentionally ignoring some packet losses. The results suggest that, with proper integration, TRA and other algorithms can together guarantee the personalization and fairness performance in the face of packet loss below a certain fraction (10%-30%).
Secure federated learning is a privacy-preserving framework to improve machine learning models by training over large volumes of data collected by mobile users. This is achieved through an iterative process where, at each iteration, users update a global model using their local datasets. Each user then masks its local model via random keys, and the masked models are aggregated at a central server to compute the global model for the next iteration. As the local models are protected by random masks, the server cannot observe their true values. This presents a major challenge for the resilience of the model against adversarial (Byzantine) users, who can manipulate the global model by modifying their local models or datasets. Towards addressing this challenge, this paper presents the first single-server Byzantine-resilient secure aggregation framework (BREA) for secure federated learning. BREA is based on an integrated stochastic quantization, verifiable outlier detection, and secure model aggregation approach to guarantee Byzantine-resilience, privacy, and convergence simultaneously. We provide theoretical convergence and privacy guarantees and characterize the fundamental trade-offs in terms of the network size, user dropouts, and privacy protection. Our experiments demonstrate convergence in the presence of Byzantine users, and comparable accuracy to conventional federated learning benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا