Do you want to publish a course? Click here

J-PAS: Measuring emission lines with artificial neural networks

96   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Throughout this paper we present a new method to detect and measure emission lines in J-PAS up to $z = 0.35$. J-PAS will observe $8000$~deg$^2$ of the northern sky in the upcoming years with 56 photometric bands. The release of such amount of data brings us the opportunity to employ machine learning methods in order to overcome the difficulties associated with photometric data. We used Artificial Neural Networks (ANNs) trained and tested with synthetic J-PAS photometry from CALIFA, MaNGA, and SDSS spectra. We carry out two tasks: firstly, we cluster galaxies in two groups according to the values of the equivalent width (EW) of $Halpha$, $Hbeta$, $[NII]{lambda 6584}$, and $ [OIII]{lambda 5007}$ lines measured in the spectra. Then, we train an ANN to assign to each galaxy a group. We are able to classify them with the uncertainties typical of the photometric redshift measurable in J-PAS. Secondly, we utilize another ANN to determine the values of those EWs. Subsequently, we obtain the $[NII]/Halpha$, $[OIII]/Hbeta$, and ion{O}{3}ion{N}{2} ratios recovering the BPT diagram . We study the performance of the ANN in two training samples: one is only composed of synthetic J-PAS photo-spectra (J-spectra) from MaNGA and CALIFA (CALMa set) and the other one is composed of SDSS galaxies. We can reproduce properly the main sequence of star forming galaxies from the determination of the EWs. With the CALMa training set we reach a precision of 0.093 and 0.081 dex for the $[NII]/Halpha$ and $[OIII]/Hbeta$ ratios in the SDSS testing sample. Nevertheless, we find an underestimation of those ratios at high values in galaxies hosting an AGN. We also show the importance of the dataset used for both training and testing the model. ANNs are extremely useful to overcome the limitations previously expected concerning the detection and measurements of the emission lines in surveys like J-PAS.

rate research

Read More

We study the consistency of the physical properties of galaxies retrieved from SED-fitting as a function of spectral resolution and signal-to-noise ratio (SNR). Using a selection of physically motivated star formation histories, we set up a control sample of mock galaxy spectra representing observations of the local universe in high-resolution spectroscopy, and in 56 narrow-band and 5 broad-band photometry. We fit the SEDs at these spectral resolutions and compute their corresponding the stellar mass, the mass- and luminosity-weighted age and metallicity, and the dust extinction. We study the biases, correlations, and degeneracies affecting the retrieved parameters and explore the r^ole of the spectral resolution and the SNR in regulating these degeneracies. We find that narrow-band photometry and spectroscopy yield similar trends in the physical properties derived, the former being considerably more precise. Using a galaxy sample from the SDSS, we compare more realistically the results obtained from high-resolution and narrow-band SEDs (synthesized from the same SDSS spectra) following the same spectral fitting procedures. We use results from the literature as a benchmark to our spectroscopic estimates and show that the prior PDFs, commonly adopted in parametric methods, may introduce biases not accounted for in a Bayesian framework. We conclude that narrow-band photometry yields the same trend in the age-metallicity relation in the literature, provided it is affected by the same biases as spectroscopy; albeit the precision achieved with the latter is generally twice as large as with the narrow-band, at SNR values typical of the different kinds of data.
We present a synthetic galaxy lightcone specially designed for narrow-band optical photometric surveys. To reduce time-discreteness effects, unlike previous works, we directly include the lightcone construction in the texttt{L-Galaxies} semi-analytic model applied to the subhalo merger trees of the {tt Millennium} simulation. Additionally, we add a model for the nebular emission in star-forming regions, which is crucial for correctly predicting the narrow/medium-band photometry of galaxies. Explicitly, we consider, individually for each galaxy, the contribution of 9 different lines: $rm Ly{alpha}$ (1216AA), Hb (4861AA), Ha (6563AA), {oii} (3727AA, 3729AA), {oiii} (4959AA, 5007AA), $rm [ion{Ne}{III}]$ (3870AA), {oi} (6300AA), $rm [ion{N}{II}]$ (6548AA, 6583AA), and $rm [ion{S}{II}]$ (6717AA, 6731AA). We validate our lightcone by comparing galaxy number counts, angular clustering, and Ha, Hb, {oii} and {oiiiFd} luminosity functions to a compilation of observations. As an application of our mock lightcones, we generate catalogues tailored for J-PLUS, a large optical galaxy survey featuring 5 broad and 7 medium band filters. We study the ability of the survey to correctly identify, with a simple textit{three filter method}, a population of emission-line galaxies at various redshifts. We show that the $4000AA$ break in the spectral energy distribution of galaxies can be misidentified as line emission. However, all significant excess (larger than 0.4 magnitudes) can be correctly and unambiguously attributed to emission line galaxies. Our catalogues are publicly released to facilitate their use in interpreting narrow-band surveys and for quantifying the impact of line emission in broad band photometry.
We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, $T_{rm eff}$, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. The Stellar Photometric Index Network Explorer, SPHINX, is developed to produce estimates of $T_{rm eff}$ and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology is applied to J-PLUS photometry of the globular cluster M15. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, sigma($T_{rm eff}$) = 91 K, over the temperature range 4500 < $T_{rm eff}$ (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < $T_{rm eff}$ (K) < 6200, 85 $pm$ 3% of stars known to have [Fe/H] <-2.0 are recovered by SPHINX. A mean metallicity of [Fe/H]=-2.32 $pm$ 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.
J-PAS will soon start imaging 8000 deg2 of the northern sky with its unique set of 56 filters (R $sim$ 60). Before, we observed 1 deg2 on the AEGIS field with an interim camera with all the J-PAS filters. With this data (miniJPAS), we aim at proving the scientific potential of J-PAS to identify and characterize the galaxy populations with the goal of performing galaxy evolution studies across cosmic time. Several SED-fitting codes are used to constrain the stellar population properties of a complete flux-limited sample (rSDSS <= 22.5 AB) of miniJPAS galaxies that extends up to z = 1. We find consistent results on the galaxy properties derived from the different codes, independently of the galaxy spectral-type or redshift. For galaxies with SNR>=10, we estimate that the J-PAS photometric system allows to derive stellar population properties with a precision that is equivalent to that obtained with spectroscopic surveys of similar SNR. By using the dust-corrected (u-r) colour-mass diagram, a powerful proxy to characterize galaxy populations, we find that the fraction of red and blue galaxies evolves with cosmic time, with red galaxies being $sim$ 38% and $sim$ 18% of the whole population at z = 0.1 and z = 0.5, respectively. At all redshifts, the more massive galaxies belong to the red sequence and these galaxies are typically older and more metal rich than their counterparts in the blue cloud. Our results confirm that with J-PAS data we will be able to analyze large samples of galaxies up to z $sim$ 1, with galaxy stellar masses above of log(M$_*$/M$_{odot}$) $sim$ 8.9, 9.5, and 9.9 at z = 0.3, 0.5, and 0.7, respectively. The SFH of a complete sub-sample of galaxies selected at z $sim$ 0.1 with log(M$_*$/M$_{odot}$) > 8.3 constrain the cosmic evolution of the star formation rate density up to z $sim$ 3 in good agreement with results from cosmological surveys.
We present Atacama Large Millimiter/submillimiter Array (ALMA) observations of eight highly excited CO (J$_{rm up}>8$) lines and continuum emission in two $zsim6$ quasars: SDSS J231038.88+185519.7 (hereafter J2310), for which CO(8-7), CO(9-8), and CO(17-16) lines have been observed, and ULAS J131911.29+095951.4 (J1319), observed in the CO(14-13), CO(17-16) and CO(19-18) lines. The continuum emission of both quasars arises from a compact region ($< 0.9$ kpc). By assuming a modified black-body law, we estimate dust masses of Log$(M_{rm dust}/M_{odot})=8.75pm0.07$ and Log$(M_{rm dust}/M_{odot})=8.8pm0.2$ and dust temperatures of $T_{rm dust}=76pm3~{rm K}$ and $T_{rm dust}=66^{+15}_{-10}~{rm K}$, respectively for J2310 and J1319. Only CO(8-7) and CO(9-8) in J2310 are detected, while $3sigma$ upper limits on luminosities are reported for the other lines of both quasars. The CO line luminosities and upper limits measured in J2310 and J1319 are consistent with those observed in local AGN and starburst galaxies, and other $zsim 6$ quasars, except for SDSS J1148+5251 (J1148), the only quasar at $z=6.4$ with a previous CO(17-16) line detection. By computing the CO SLEDs normalised to the CO(6-5) line and FIR luminosities for J2310, J1319, and J1149, we conclude that different gas heating mechanisms (X-ray radiation and/or shocks) may explain the different CO luminosities observed in these $zsim6$ quasar. Future J$_{rm up}>8$ CO observations will be crucial to understand the processes responsible for molecular gas excitation in luminous high-$z$ quasars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا