Do you want to publish a course? Click here

Bilevel Learning Model Towards Industrial Scheduling

87   0   0.0 ( 0 )
 Added by Longkang Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Automatic industrial scheduling, aiming at optimizing the sequence of jobs over limited resources, is widely needed in manufacturing industries. However, existing scheduling systems heavily rely on heuristic algorithms, which either generate ineffective solutions or compute inefficiently when job scale increases. Thus, it is of great importance to develop new large-scale algorithms that are not only efficient and effective, but also capable of satisfying complex constraints in practice. In this paper, we propose a Bilevel Deep reinforcement learning Scheduler, textit{BDS}, in which the higher level is responsible for exploring an initial global sequence, whereas the lower level is aiming at exploitation for partial sequence refinements, and the two levels are connected by a sliding-window sampling mechanism. In the implementation, a Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. After the theoretical guarantee for the convergence of BDS, we evaluate it in an industrial automatic warehouse scenario, with job number up to $5000$ in each production line. It is shown that our proposed BDS significantly outperforms two most used heuristics, three strong deep networks, and another bilevel baseline approach. In particular, compared with the most used greedy-based heuristic algorithm in real world which takes nearly an hour, our BDS can decrease the makespan by 27.5%, 28.6% and 22.1% for 3 largest datasets respectively, with computational time less than 200 seconds.



rate research

Read More

With a growing interest in data-driven control techniques, Model Predictive Control (MPC) provides an opportunity to exploit the surplus of data reliably, particularly while taking safety and stability into account. In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator. The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability. Learning how to be safe is achieved directly from data and from a knowledge of the system constraints. The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric. The terminal cost is constructed as a Lyapunov function neural network with the aim of recovering or extending the stable region of the initial demonstrator using a short prediction horizon. Theorems that characterize the stability and performance of the learned MPC in the bearing of model uncertainties and sub-optimality due to function approximation are presented. The efficacy of the proposed algorithm is demonstrated on non-linear continuous control tasks with soft constraints. The proposed approach can improve upon the initial demonstrator also in practice and achieve better stability than popular reinforcement learning baselines.
Interpretable Multi-Task Learning can be expressed as learning a sparse graph of the task relationship based on the prediction performance of the learned models. Since many natural phenomenon exhibit sparse structures, enforcing sparsity on learned models reveals the underlying task relationship. Moreover, different sparsification degrees from a fully connected graph uncover various types of structures, like cliques, trees, lines, clusters or fully disconnected graphs. In this paper, we propose a bilevel formulation of multi-task learning that induces sparse graphs, thus, revealing the underlying task relationships, and an efficient method for its computation. We show empirically how the induced sparse graph improves the interpretability of the learned models and their relationship on synthetic and real data, without sacrificing generalization performance. Code at https://bit.ly/GraphGuidedMTL
In this paper, we investigate the combination of synthesis, model-based learning, and online sampling techniques to obtain safe and near-optimal schedulers for a preemptible task scheduling problem. Our algorithms can handle Markov decision processes (MDPs) that have 1020 states and beyond which cannot be handled with state-of-the art probabilistic model-checkers. We provide probably approximately correct (PAC) guarantees for learning the model. Additionally, we extend Monte-Carlo tree search with advice, computed using safety games or obtained using the earliest-deadline-first scheduler, to safely explore the learned model online. Finally, we implemented and compared our algorithms empirically against shielded deep Q-learning on large task systems.
We consider the setting of an agent with a fixed body interacting with an unknown and uncertain external world. We show that models trained to predict proprioceptive information about the agents body come to represent objects in the external world. In spite of being trained with only internally available signals, these dynamic body models come to represent external objects through the necessity of predicting their effects on the agents own body. That is, the model learns holistic persistent representations of objects in the world, even though the only training signals are body signals. Our dynamics model is able to successfully predict distributions over 132 sensor readings over 100 steps into the future and we demonstrate that even when the body is no longer in contact with an object, the latent variables of the dynamics model continue to represent its shape. We show that active data collection by maximizing the entropy of predictions about the body---touch sensors, proprioception and vestibular information---leads to learning of dynamic models that show superior performance when used for control. We also collect data from a real robotic hand and show that the same models can be used to answer questions about properties of objects in the real world. Videos with qualitative results of our models are available at https://goo.gl/mZuqAV.
We study the question of how concepts that have structure get represented in the brain. Specifically, we introduce a model for hierarchically structured concepts and we show how a biologically plausible neural network can recognize these concepts, and how it can learn them in the first place. Our main goal is to introduce a general framework for these tasks and prove formally how both (recognition and learning) can be achieved. We show that both tasks can be accomplished even in presence of noise. For learning, we analyze Ojas rule formally, a well-known biologically-plausible rule for adjusting the weights of synapses. We complement the learning results with lower bounds asserting that, in order to recognize concepts of a certain hierarchical depth, neural networks must have a corresponding number of layers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا