Do you want to publish a course? Click here

Lights and Shadows in Evolutionary Deep Learning: Taxonomy, Critical Methodological Analysis, Cases of Study, Learned Lessons, Recommendations and Challenges

151   0   0.0 ( 0 )
 Added by Javier Del Ser Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Much has been said about the fusion of bio-inspired optimization algorithms and Deep Learning models for several purposes: from the discovery of network topologies and hyper-parametric configurations with improved performance for a given task, to the optimization of the models parameters as a replacement for gradient-based solvers. Indeed, the literature is rich in proposals showcasing the application of assorted nature-inspired approaches for these tasks. In this work we comprehensively review and critically examine contributions made so far based on three axes, each addressing a fundamental question in this research avenue: a) optimization and taxonomy (Why?), including a historical perspective, definitions of optimization problems in Deep Learning, and a taxonomy associated with an in-depth analysis of the literature, b) critical methodological analysis (How?), which together with two case studies, allows us to address learned lessons and recommendations for good practices following the analysis of the literature, and c) challenges and new directions of research (What can be done, and what for?). In summary, three axes - optimization and taxonomy, critical analysis, and challenges - which outline a complete vision of a merger of two technologies drawing up an exciting future for this area of fusion research.



rate research

Read More

In this work we consider multitasking in the context of solving multiple optimization problems simultaneously by conducting a single search process. The principal goal when dealing with this scenario is to dynamically exploit the existing complementarities among the problems (tasks) being optimized, helping each other through the exchange of valuable knowledge. Additionally, the emerging paradigm of Evolutionary Multitasking tackles multitask optimization scenarios by using as inspiration concepts drawn from Evolutionary Computation. The main purpose of this survey is to collect, organize and critically examine the abundant literature published so far in Evolutionary Multitasking, with an emphasis on the methodological patterns followed when designing new algorithmic proposals in this area (namely, multifactorial optimization and multipopulation-based multitasking). We complement our critical analysis with an identification of challenges that remain open to date, along with promising research directions that can stimulate future efforts in this topic. Our discussions held throughout this manuscript are offered to the audience as a reference of the general trajectory followed by the community working in this field in recent times, as well as a self-contained entry point for newcomers and researchers interested to join this exciting research avenue.
Learning-based heuristics for solving combinatorial optimization problems has recently attracted much academic attention. While most of the existing works only consider the single objective problem with simple constraints, many real-world problems have the multiobjective perspective and contain a rich set of constraints. This paper proposes a multiobjective deep reinforcement learning with evolutionary learning algorithm for a typical complex problem called the multiobjective vehicle routing problem with time windows (MO-VRPTW). In the proposed algorithm, the decomposition strategy is applied to generate subproblems for a set of attention models. The comprehensive context information is introduced to further enhance the attention models. The evolutionary learning is also employed to fine-tune the parameters of the models. The experimental results on MO-VRPTW instances demonstrate the superiority of the proposed algorithm over other learning-based and iterative-based approaches.
Clustering methods based on deep neural networks have proven promising for clustering real-world data because of their high representational power. In this paper, we propose a systematic taxonomy of clustering methods that utilize deep neural networks. We base our taxonomy on a comprehensive review of recent work and validate the taxonomy in a case study. In this case study, we show that the taxonomy enables researchers and practitioners to systematically create new clustering methods by selectively recombining and replacing distinct aspects of previous methods with the goal of overcoming their individual limitations. The experimental evaluation confirms this and shows that the method created for the case study achieves state-of-the-art clustering quality and surpasses it in some cases.
Recent work has shown how to learn better visual-semantic embeddings by leveraging image descriptions in more than one language. Here, we investigate in detail which conditions affect the performance of this type of grounded language learning model. We show that multilingual training improves over bilingual training, and that low-resource languages benefit from training with higher-resource languages. We demonstrate that a multilingual model can be trained equally well on either translations or comparable sentence pairs, and that annotating the same set of images in multiple language enables further improvements via an additional caption-caption ranking objective.
We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing large, redundant, retrieval corpora or the parameters of large learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا