No Arabic abstract
On 2019 May 6, the Lunar Lander Neutron & Dosimetry (LND) Experiment on board the ChangE-4 on the far-side of the Moon detected its first small solar energetic particle (SEP) event with proton energies up to 21MeV. Combined proton energy spectra are studied based on the LND, SOHO/EPHIN and ACE/EPAM measurements which show that LND could provide a complementary dataset from a special location on the Moon, contributing to our existing observations and understanding of space environment. Velocity dispersion analysis (VDA) has been applied to the impulsive electron event and weak proton enhancement and the results demonstrate that electrons are released only 22 minutes after the flare onset and $sim$15 minutes after type II radio burst, while protons are released more than one hour after the electron release. The impulsive enhancement of the in-situ electrons and the derived early release time indicate a good magnetic connection between the source and Earth. However, stereoscopic remote-sensing observations from Earth and STA suggest that the SEPs are associated with an active region nearly 100$^circ$ away from the magnetic footpoint of Earth. This suggests that the propagation of these SEPs could not follow a nominal Parker spiral under the ballistic mapping model and the release and propagation mechanism of electrons and protons are likely to differ significantly during this event.
We report observations of a relatively long period of 3He-rich solar energetic particles (SEPs) measured by Solar Orbiter. The period consists of several well-resolved ion injections. The high-resolution STEREO-A imaging observations reveal that the injections coincide with EUV jets/brightenings near the east limb, not far from the nominal magnetic connection of Solar Orbiter. The jets originated in two adjacent, large, and complex active regions as observed by the Solar Dynamics Observatory when the regions rotated to the Earths view. It appears that the sustained ion injections were related to the complex configuration of the sunspot group and the long period of 3He-rich SEPs to the longitudinal extent covered by the group during the analyzed time period.
Energetic particle transport in the interplanetary medium is known to be affected by magnetic structures. It has been demonstrated for solar energetic particles in near-Earth orbit studies, and also for the more energetic cosmic rays. In this paper, we show observational evidence that intensity variations of solar energetic particles can be correlated with the occurrence of helical magnetic flux tubes and their boundaries. The analysis is carried out using data from Parker Solar Probe orbit 5, in the period 2020 May 24 to June 2. We use FIELDS magnetic field data and energetic particle measurements from the Integrated Science Investigation of the Sun (isois) suite on the Parker Solar Probe. We identify magnetic flux ropes by employing a real-space evaluation of magnetic helicity, and their potential boundaries using the Partial Variance of Increments method. We find that energetic particles are either confined within or localized outside of helical flux tubes, suggesting that the latter act as transport boundaries for particles, consistent with previously developed viewpoints.
We calculate the interplanetary magnetic field path lengths traveled by electrons in solar electron events detected by the WIND 3DP instrument from $1994$ to $2016$. The velocity dispersion analysis method is applied for electrons at energies of $sim$ $27$ keV to $310$ keV. Previous velocity dispersion analyses employ the onset times, which are often affected by instrumental effects and the pre-existing background flux, leading to large uncertainties. We propose a new method here. Instead of using the peak or onset time, we apply the velocity dispersion analysis to the times that correspond to the rising phase of the fluxes that are a fraction, $eta$, of the peak flux. We perform statistical analysis on selected events whose calculated path lengths have uncertainties smaller than $0.1$ AU. The mean and standard deviation, ($mu$, $sigma$), of the calculated path lengths corresponding to $eta=$ $3/4$, $1/2$, and $1/3$ of the peak flux is ($1.17$ AU, $0.17$ AU), ($1.11$ AU, $0.14$ AU), and ($1.06$ AU, $0.15$ AU). The distribution of the calculated path lengths is also well fitted by a Gaussian distribution for the $eta=3/4$ and $1/3$ cases. These results suggest that in these electron events the interplanetary magnetic field topology is close to the nominal Parker spiral with little field line meandering. Our results have important implications for particles perpendicular diffusion.
The most powerful explosions on the Sun [...] drive the most severe space-weather storms. Proxy records of flare energies based on SEPs in principle may offer the longest time base to study infrequent large events. We conclude that one suggested proxy, nitrate concentrations in polar ice cores, does not map reliably to SEP events. Concentrations of select radionuclides measured in natural archives may prove useful in extending the time interval of direct observations up to ten millennia, but as their calibration to solar flare fluences depends on multiple poorly known properties and processes, these proxies cannot presently be used to help determine the flare energy frequency distribution. Being thus limited to the use of direct flare observations, we evaluate the probabilities of large-energy solar explosions by combining solar flare observations with an ensemble of stellar flare observations. We conclude that solar flare energies form a relatively smooth distribution from small events to large flares, while flares on magnetically-active, young Sun-like stars have energies and frequencies markedly in excess of strong solar flares, even after an empirical scaling with the mean activity level of these stars. In order to empirically quantify the frequency of uncommonly large solar flares extensive surveys of stars of near-solar age need to be obtained, such as is feasible with the Kepler satellite. Because the likelihood of flares larger than approximately X30 remains empirically unconstrained, we present indirect arguments, based on records of sunspots and on statistical arguments, that solar flares in the past four centuries have likely not substantially exceeded the level of the largest flares observed in the space era, and that there is at most about a 10% chance of a flare larger than about X30 in the next 30 years.
Particle acceleration in stellar flares is ubiquitous in the Universe, however, our Sun is the only astrophysical object where energetic particles and their source flares can both be observed. The acceleration mechanism in solar flares, tremendously enhancing (up to a factor of ten thousand) rare elements like 3He and ultra-heavy nuclei, has been puzzling for almost 50 years. Here we present some of the most intense 3He- and Fe-rich solar energetic particle events ever reported. The events were accompanied by non-relativistic electron events and type III radio bursts. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. The helical jets originated in relatively small, compact active regions, located at the coronal hole boundary. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories STEREO on the backside of the Sun, during the period of increased solar activity in 2014. The helical jets may be a distinct feature of these intense events that is related to the production of high 3He and Fe enrichments.