Do you want to publish a course? Click here

Post-growth annealing effects on charge and spin excitations in Nd$_{2-x}$Ce$_x$CuO$_4$

85   0   0.0 ( 0 )
 Added by Kenji Ishii
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a Cu K- and L$_3$-edge resonant inelastic x-ray scattering study of charge and spin excitations of bulk Nd$_{2-x}$Ce$_x$CuO$_4$, with focus on post-growth annealing effects. For the parent compound Nd$_2$CuO$_4$ ($x = 0$), a clear charge-transfer gap is observed in the as-grown state, whereas the charge excitation spectra indicate that electrons are doped in the annealed state. This is consistent with the observation that annealed thin-film and polycrystalline samples of RE$_2$CuO$_4$ (RE = rare earth) can become metallic and superconducting at sufficiently high electron concentrations without Ce doping. For $x = 0.16$, a Ce concentration for which it is known that oxygen reduction destroys long-range antiferromagnetic order and induces superconductivity, we find that the high-energy spin excitations of non-superconducting as-grown and superconducting annealed crystals are nearly identical. This finding is in stark contrast to the significant changes in the low-energy spin excitations previously observed via neutron scattering.

rate research

Read More

We use neutron scattering to study the influence of a magnetic field on spin structures of Nd$_2$CuO$_4$. On cooling from room temperature, Nd$_2$CuO$_4$ goes through a series of antiferromagnetic (AF) phase transitions with different noncollinear spin structures. While a c-axis aligned magnetic field does not alter the basic zero-field noncollinear spin structures, a field parallel to the CuO$_2$ plane can transform the noncollinear structure to a collinear one (spin-flop transition), induce magnetic disorder along the c-axis, and cause hysteresis in the AF phase transitions. By comparing these results directly to the magnetoresistance (MR) measurements of Nd$_{1.975}$Ce$_{0.025}$CuO$_4$, which has essentially the same AF structures as Nd$_2$CuO$_4$, we find that a magnetic-field-induced spin-flop transition, AF phase hysteresis, and spin c-axis disorder all affect the transport properties of the material. Our results thus provide direct evidence for the existence of a strong spin-charge coupling in electron-doped copper oxides.
Charge order has now been observed in several cuprate high-temperature superconductors. We report a resonant inelastic x-ray scattering experiment on the electron-doped cuprate Nd$_{2-x}$Ce$_{x}$CuO$_4$ that demonstrates the existence of dynamic correlations at the charge order wave vector. Upon cooling we observe a softening in the electronic response, which has been predicted to occur for a d-wave charge order in electron-doped cuprates. At low temperatures, the energy range of these excitations coincides with that of the dispersive magnetic modes known as paramagnons. Furthermore, measurements where the polarization of the scattered photon is resolved indicate that the dynamic response at the charge order wave vector primarily involves spin-flip excitations. Overall, our findings indicate a coupling between dynamic magnetic and charge-order correlations in the cuprates.
We performed Cu {it K}-edge X-ray absorption fine structure measurements on T-type La$_{1.8}$Eu$_{0.2}$CuO$_4$ (LECO) and Nd$_2$CuO$_4$ (NCO) to investigate the variation in the electronic state associated with the emergence of superconductivity due to annealing. The X-ray absorption near-edge structure spectra of as-sintered (AS) LECO are quite similar to those of AS NCO, indicating that the ground state of AS T-type LECO is a Mott insulator. We found a significant variation of the electronic state at the Cu sites in LECO due to annealing. The electron density after annealing ($n_{rm AN}$) was evaluated for both superconducting LECO and non-superconducting NCO and found to be 0.40 and 0.05 electrons per Cu, respectively. In LECO but not in NCO, extended X-ray absorption fine structure analysis revealed a softening in the strength of the Cu-O bond in the CuO$_2$ plane due to annealing, which is consistent with the screening effect on phonons in the metallic state. Since the amounts of oxygen loss due to annealing ($delta$) for LECO and NCO are comparable with each other, these results suggest distinct electron-doping processes in the two compounds. That electron-doping in NCO approximately follows the relation $n_{rm AN}=2delta$ can be understood if electrons are doped through oxygen deficiency, but the anneal-induced metallic nature and large $n_{rm AN}$ of LECO suggest a variation of the electronic band structure causes self-doping of carriers. The origin of the difference in doping processes due to annealing is discussed in connection with the size of the charge transfer gap.
Temperature dependence of the in-plane electrical resistivity, $rho_{rm ab}$, in various magnetic fields has been measured in the single-crystal La$_{2-x}$Ba$_x$CuO$_4$ with $x=0.08$, 0.10, 0.11 and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ with $x=0.12$. It has been found that the superconducting transition curve shows a so-called fan-shape broadening in magnetic fields for $x=0.08$, while it shifts toward the low-temperature side in parallel with increasing field for $x=0.11$ and 0.12 where the charge-spin stripe order is formed at low temperatures. As for $x=0.10$, the broadening is observed in low fields and it changes to the parallel shift in high fields above 9 T. Moreover, the normal-state value of $rho_{rm ab}$ at low temperatures markedly increases with increasing field up to 15 T. It is possible that these pronounced features of $x=0.10$ are understood in terms of the magnetic-field-induced stabilization of the stripe order suggested from the neutron-scattering measurements in the La-214 system. The $rho_{rm ab}$ in the normal state at low temperatures has been found to be proportional to ln(1/$T$) for $x=0.10$, 0.11 and 0.12. The ln(1/$T$) dependence of $rho_{rm ab}$ is robust even in the stripe-ordered state.
High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4pmdelta} (NCCO) shows bulk superconductivity above x approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا