Do you want to publish a course? Click here

A Multi-Task Learning Approach for Human Activity Segmentation and Ergonomics Risk Assessment

140   0   0.0 ( 0 )
 Added by Behnoosh Parsa
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a new approach to Human Activity Evaluation (HAE) in long videos using graph-based multi-task modeling. Previous works in activity evaluation either directly compute a metric using a detected skeleton or use the scene information to regress the activity score. These approaches are insufficient for accurate activity assessment since they only compute an average score over a clip, and do not consider the correlation between the joints and body dynamics. Moreover, they are highly scene-dependent which makes the generalizability of these methods questionable. We propose a novel multi-task framework for HAE that utilizes a Graph Convolutional Network backbone to embed the interconnections between human joints in the features. In this framework, we solve the Human Activity Segmentation (HAS) problem as an auxiliary task to improve activity assessment. The HAS head is powered by an Encoder-Decoder Temporal Convolutional Network to semantically segment long videos into distinct activity classes, whereas, HAE uses a Long-Short-Term-Memory-based architecture. We evaluate our method on the UW-IOM and TUM Kitchen datasets and discuss the success and failure cases in these two datasets.



rate research

Read More

Key role in the prevention of diet-related chronic diseases plays the balanced nutrition together with a proper diet. The conventional dietary assessment methods are time-consuming, expensive and prone to errors. New technology-based methods that provide reliable and convenient dietary assessment, have emerged during the last decade. The advances in the field of computer vision permitted the use of meal image to assess the nutrient content usually through three steps: food segmentation, recognition and volume estimation. In this paper, we propose a use one RGB meal image as input to a multi-task learning based Convolutional Neural Network (CNN). The proposed approach achieved outstanding performance, while a comparison with state-of-the-art methods indicated that the proposed approach exhibits clear advantage in accuracy, along with a massive reduction of processing time.
Federated learning (FL) for medical image segmentation becomes more challenging in multi-task settings where clients might have different categories of labels represented in their data. For example, one client might have patient data with healthy pancreases only while datasets from other clients may contain cases with pancreatic tumors. The vanilla federated averaging algorithm makes it possible to obtain more generalizable deep learning-based segmentation models representing the training data from multiple institutions without centralizing datasets. However, it might be sub-optimal for the aforementioned multi-task scenarios. In this paper, we investigate heterogeneous optimization methods that show improvements for the automated segmentation of pancreas and pancreatic tumors in abdominal CT images with FL settings.
Early detection and segmentation of skin lesions is crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, manual delineation is time consuming and subject to intra- and inter-observer variations among dermatologists. This underlines the need for an accurate and automatic approach to skin lesion segmentation. To tackle this issue, we propose a multi-task convolutional neural network (CNN) based, joint detection and segmentation framework, designed to initially localize the lesion and subsequently, segment it. A `Faster region-based convolutional neural network (Faster-RCNN) which comprises a region proposal network (RPN), is used to generate bounding boxes/region proposals, for lesion localization in each image. The proposed regions are subsequently refined using a softmax classifier and a bounding-box regressor. The refined bounding boxes are finally cropped and segmented using `SkinNet, a modified version of U-Net. We trained and evaluated the performance of our network, using the ISBI 2017 challenge and the PH2 datasets, and compared it with the state-of-the-art, using the official test data released as part of the challenge for the former. Our approach outperformed others in terms of Dice coefficients ($>0.93$), Jaccard index ($>0.88$), accuracy ($>0.96$) and sensitivity ($>0.95$), across five-fold cross validation experiments.
65 - Hong Luo , Han Liu , Kejun Li 2019
The quality control of fetal sonographic (FS) images is essential for the correct biometric measurements and fetal anomaly diagnosis. However, quality control requires professional sonographers to perform and is often labor-intensive. To solve this problem, we propose an automatic image quality assessment scheme based on multi-task learning to assist in FS image quality control. An essential criterion for FS image quality control is that all the essential anatomical structures in the section should appear full and remarkable with a clear boundary. Therefore, our scheme aims to identify those essential anatomical structures to judge whether an FS image is the standard image, which is achieved by three convolutional neural networks. The Feature Extraction Network aims to extract deep level features of FS images. Based on the extracted features, the Class Prediction Network determines whether the structure meets the standard and Region Proposal Network identifies its position. The scheme has been applied to three types of fetal sections, which are the head, abdominal, and heart. The experimental results show that our method can make a quality assessment of an FS image within less a second. Also, our method achieves competitive performance in both the detection and classification compared with state-of-the-art methods.
We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in a deep network architecture. We show that including the body-part detection task helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several data sets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا