We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in a deep network architecture. We show that including the body-part detection task helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several data sets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts.
While there has been a success in 2D human pose estimation with convolutional neural networks (CNNs), 3D human pose estimation has not been thoroughly studied. In this paper, we tackle the 3D human pose estimation task with end-to-end learning using CNNs. Relative 3D positions between one joint and the other joints are learned via CNNs. The proposed method improves the performance of CNN with two novel ideas. First, we added 2D pose information to estimate a 3D pose from an image by concatenating 2D pose estimation result with the features from an image. Second, we have found that more accurate 3D poses are obtained by combining information on relative positions with respect to multiple joints, instead of just one root joint. Experimental results show that the proposed method achieves comparable performance to the state-of-the-art methods on Human 3.6m dataset.
Multi-frame human pose estimation in complicated situations is challenging. Although state-of-the-art human joints detectors have demonstrated remarkable results for static images, their performances come short when we apply these models to video sequences. Prevalent shortcomings include the failure to handle motion blur, video defocus, or pose occlusions, arising from the inability in capturing the temporal dependency among video frames. On the other hand, directly employing conventional recurrent neural networks incurs empirical difficulties in modeling spatial contexts, especially for dealing with pose occlusions. In this paper, we propose a novel multi-frame human pose estimation framework, leveraging abundant temporal cues between video frames to facilitate keypoint detection. Three modular components are designed in our framework. A Pose Temporal Merger encodes keypoint spatiotemporal context to generate effective searching scopes while a Pose Residual Fusion module computes weighted pose residuals in dual directions. These are then processed via our Pose Correction Network for efficient refining of pose estimations. Our method ranks No.1 in the Multi-frame Person Pose Estimation Challenge on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018. We have released our code, hoping to inspire future research.
Human pose estimation is an important topic in computer vision with many applications including gesture and activity recognition. However, pose estimation from image is challenging due to appearance variations, occlusions, clutter background, and complex activities. To alleviate these problems, we develop a robust pose estimation method based on the recent deep conv-deconv modules with two improvements: (1) multi-scale supervision of body keypoints, and (2) a global regression to improve structural consistency of keypoints. We refine keypoint detection heatmaps using layer-wise multi-scale supervision to better capture local contexts. Pose inference via keypoint association is optimized globally using a regression network at the end. Our method can effectively disambiguate keypoint matches in close proximity including the mismatch of left-right body parts, and better infer occluded parts. Experimental results show that our method achieves competitive performance among state-of-the-art methods on the MPII and FLIC datasets.
In this paper, we present a novel approach that uses deep learning techniques for colorizing grayscale images. By utilizing a pre-trained convolutional neural network, which is originally designed for image classification, we are able to separate content and style of different images and recombine them into a single image. We then propose a method that can add colors to a grayscale image by combining its content with style of a color image having semantic similarity with the grayscale one. As an application, to our knowledge the first of its kind, we use the proposed method to colorize images of ukiyo-e a genre of Japanese painting?and obtain interesting results, showing the potential of this method in the growing field of computer assisted art.
We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learning in matching body keypoints by combining feature heatmaps across scales, (2) multi-scale regression network at the end to globally optimize the structural matching of the multi-scale features, (3) structure-aware loss used in the intermediate supervision and at the regression to improve the matching of keypoints and respective neighbors to infer a higher-order matching configurations, and (4) a keypoint masking training scheme that can effectively fine-tune our network to robustly localize occluded keypoints via adjacent matches. Our method can effectively improve state-of-the-art pose estimation methods that suffer from difficulties in scale varieties, occlusions, and complex multi-person scenarios. This multi-scale supervision tightly integrates with the regression network to effectively (i) localize keypoints using the ensemble of multi-scale features, and (ii) infer global pose configuration by maximizing structural consistencies across multiple keypoints and scales. The keypoint masking training enhances these advantages to focus learning on hard occlusion samples. Our method achieves the leading position in the MPII challenge leaderboard among the state-of-the-art methods.
Sijin Li
,Zhi-Qiang Liu
,Antoni B. Chan
.
(2014)
.
"Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network"
.
Sijin Li
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا