No Arabic abstract
The recent availability of quantum annealers has fueled a new area of information technology where such devices are applied to address practically motivated and computationally difficult problems with hardware that exploits quantum mechanical phenomena. D-Wave annealers are promising platforms to solve these problems in the form of quadratic unconstrained binary optimization. Here we provide a formulation of the Chinese postman problem that can be used as a tool for probing the local connectivity of graphs and networks. We treat the problem classically with a tabu algorithm and using a D-Wave device. We systematically analyze computational parameters associated with the specific hardware. Our results clarify how the interplay between the embedding due to limited connectivity of the Chimera graph, the definition of logical qubits, and the role of spin-reversal controls the probability of reaching the expected solution.
Quantum computers are ideal for solving chemistry problems due to their polynomial scaling with system size in contrast to classical computers which scale exponentially. Until now molecular energy calculations using quantum computing hardware have been limited to quantum simulators. In this paper, a new methodology is presented to calculate the vibrational spectrum of a molecule on a quantum annealer. The key idea of the method is a mapping of the ground state variational problem onto an Ising or quadratic unconstrained binary optimization (QUBO) problem by expressing the expansion coefficients using spins or qubits. The algorithm is general and represents a new revolutionary approach for solving the real symmetric eigenvalue problem on a quantum annealer. The method is applied to two chemically important molecules: O$_2$ (oxygen) and O$_3$ (ozone). The lowest two vibrational states of these molecules are computed using both a hardware quantum annealer and a software based classical annealer.
We demonstrate that a quantum annealer can be used to solve the NP-complete problem of graph partitioning into subgraphs containing Hamiltonian cycles of constrained length. We present a method to find a partition of a given directed graph into Hamiltonian subgraphs with three or more vertices, called vertex 3-cycle cover. We formulate the problem as a quadratic unconstrained binary optimisation and run it on a D-Wave Advantage quantum annealer. We test our method on synthetic graphs constructed by adding a number of random edges to a set of disjoint cycles. We show that the probability of solution is independent of the cycle length, and a solution is found for graphs up to 4000 vertices and 5200 edges, close to the number of physical working qubits available on the quantum annealer.
The Hierarchical Chinese Postman Problem is finding a shortest traversal of all edges of a graph respecting precedence constraints given by a partial order on classes of edges. We show that the special case with connected classes is NP-hard even on orders decomposable into a chain and an incomparable class. For the case with linearly ordered (possibly disconnected) classes, we get 5/3-approximations and fixed-parameter algorithms by transferring results from the Rural Postman Problem.
Motivated by two recent experiments in which thermal properties of complex many-body systems were successfully reproduced on a commercially available quantum annealer, we examine the extent to which quantum annealing hardware can reliably sample from the thermal state associated with a target quantum Hamiltonian. We address this question by studying the thermal properties of the canonical one-dimensional transverse-field Ising model on a D-Wave 2000Q quantum annealing processor. We find that the quantum processor fails to produce the correct expectation values predicted by Quantum Monte Carlo. Comparing to master equation simulations, we find that this discrepancy is best explained by how the measurements at finite transverse fields are enacted on the device. Specifically, measurements at finite transverse field require the system to be quenched from the target Hamiltonian to a Hamiltonian with negligible transverse field, and this quench is too slow. We elaborate on how the limitations imposed by such hardware make it an unlikely candidate for studying the thermal properties of generic quantum many-body systems.
Optimal flight gate assignment is a highly relevant optimization problem from airport management. Among others, an important goal is the minimization of the total transit time of the passengers. The corresponding objective function is quadratic in the binary decision variables encoding the flight-to-gate assignment. Hence, it is a quadratic assignment problem being hard to solve in general. In this work we investigate the solvability of this problem with a D-Wave quantum annealer. These machines are optimizers for quadratic unconstrained optimization problems (QUBO). Therefore the flight gate assignment problem seems to be well suited for these machines. We use real world data from a mid-sized German airport as well as simulation based data to extract typical instances small enough to be amenable to the D-Wave machine. In order to mitigate precision problems, we employ bin packing on the passenger numbers to reduce the precision requirements of the extracted instances. We find that, for the instances we investigated, the bin packing has little effect on the solution quality. Hence, we were able to solve small problem instances extracted from real data with the D-Wave 2000Q quantum annealer.