No Arabic abstract
Motivated by two recent experiments in which thermal properties of complex many-body systems were successfully reproduced on a commercially available quantum annealer, we examine the extent to which quantum annealing hardware can reliably sample from the thermal state associated with a target quantum Hamiltonian. We address this question by studying the thermal properties of the canonical one-dimensional transverse-field Ising model on a D-Wave 2000Q quantum annealing processor. We find that the quantum processor fails to produce the correct expectation values predicted by Quantum Monte Carlo. Comparing to master equation simulations, we find that this discrepancy is best explained by how the measurements at finite transverse fields are enacted on the device. Specifically, measurements at finite transverse field require the system to be quenched from the target Hamiltonian to a Hamiltonian with negligible transverse field, and this quench is too slow. We elaborate on how the limitations imposed by such hardware make it an unlikely candidate for studying the thermal properties of generic quantum many-body systems.
We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare its properties directly with those of the thermal 2D Ising model. These properties include an Ising-like phase transition that can be induced by either a change in quantum-ness of the theory, or by a scaling the Ising couplings up or down. This behaviour is in accord with what is expected from the physical understanding of the quantum system. We then go on to demonstrate the efficacy of the quantum annealer at minimising several increasingly hard two dimensional potentials. For all the potentials we find the general behaviour that Nelder-Mead and gradient descent methods are very susceptible to becoming trapped in false minima, while the thermal anneal method is somewhat better at discovering the true minimum. However, and despite current limitations on its size, the quantum annealer performs a minimisation very markedly better than any of these classical techniques. A quantum anneal can be designed so that the system almost never gets trapped in a false minimum, and rapidly and successfully minimises the potentials.
Optimal flight gate assignment is a highly relevant optimization problem from airport management. Among others, an important goal is the minimization of the total transit time of the passengers. The corresponding objective function is quadratic in the binary decision variables encoding the flight-to-gate assignment. Hence, it is a quadratic assignment problem being hard to solve in general. In this work we investigate the solvability of this problem with a D-Wave quantum annealer. These machines are optimizers for quadratic unconstrained optimization problems (QUBO). Therefore the flight gate assignment problem seems to be well suited for these machines. We use real world data from a mid-sized German airport as well as simulation based data to extract typical instances small enough to be amenable to the D-Wave machine. In order to mitigate precision problems, we employ bin packing on the passenger numbers to reduce the precision requirements of the extracted instances. We find that, for the instances we investigated, the bin packing has little effect on the solution quality. Hence, we were able to solve small problem instances extracted from real data with the D-Wave 2000Q quantum annealer.
The application in cryptography of quantum algorithms for prime factorization fostered the interest in quantum computing. However, quantum computers, and particularly quantum annealers, can also be helpful to construct secure cryptographic keys. Indeed, finding robust Boolean functions for cryptography is an important problem in sequence ciphers, block ciphers, and hash functions, among others. Due to the super-exponential size $mathcal{O}(2^{2^n})$ of the associated space, finding $n$-variable Boolean functions with global cryptographic constraints is computationally hard. This problem has already been addressed employing generic low-connected incoherent D-Wave quantum annealers. However, the limited connectivity of the Chimera graph, together with the exponential growth in the complexity of the Boolean function design problem, limit the problem scalability. Here, we propose a special-purpose coherent quantum annealing architecture with three couplers per qubit, designed to optimally encode the bent function design problem. A coherent quantum annealer with this tree-type architecture has the potential to solve the $8$-variable bent function design problem, which is classically unsolved, with only $127$ physical qubits and $126$ couplers. This paves the way to reach useful quantum supremacy within the framework of quantum annealing for cryptographic purposes.
Recently the question of whether the D-Wave processors exhibit large-scale quantum behavior or can be described by a classical model has attracted significant interest. In this work we address this question by studying a 503 qubit D-Wave Two device in the black box model, i.e., by studying its input-output behavior. Our work generalizes an approach introduced in Boixo et al. [Nat. Commun. 4, 2067 (2013)], and uses groups of up to 20 qubits to realize a transverse Ising model evolution with a ground state degeneracy whose distribution acts as a sensitive probe that distinguishes classical and quantum models for the D-Wave device. Our findings rule out all classical models proposed to date for the device and provide evidence that an open system quantum dynamical description of the device that starts from a quantized energy level structure is well justified, even in the presence of relevant thermal excitations and a small value of the ratio of the single-qubit decoherence time to the annealing time.
Quantum computers are ideal for solving chemistry problems due to their polynomial scaling with system size in contrast to classical computers which scale exponentially. Until now molecular energy calculations using quantum computing hardware have been limited to quantum simulators. In this paper, a new methodology is presented to calculate the vibrational spectrum of a molecule on a quantum annealer. The key idea of the method is a mapping of the ground state variational problem onto an Ising or quadratic unconstrained binary optimization (QUBO) problem by expressing the expansion coefficients using spins or qubits. The algorithm is general and represents a new revolutionary approach for solving the real symmetric eigenvalue problem on a quantum annealer. The method is applied to two chemically important molecules: O$_2$ (oxygen) and O$_3$ (ozone). The lowest two vibrational states of these molecules are computed using both a hardware quantum annealer and a software based classical annealer.