No Arabic abstract
The young shell-type supernova remnant RCW 103 has peculiar properties in the X-ray morphology obtained with Chandra. The southeastern shell is more brighter in the X-rays, and the curved border of the shell in this region is more flatten than the other part. We investigate the formation of the peculiar periphery of the supernova remnant RCW 103 using 3D hydrodynamical simulation. Assuming that the supernova ejecta has been evolved in the medium with a density gradient, the detected shape of the periphery can be generally reproduced. For RCW 103, with the ejecta mass of $3.0~M_{odot}$, the density of the background material of $2.0~mathrm{cm}^{-3}$, and a gradient of $3.3 - 4.0 ~mathrm{cm}^{-3} mathrm{pc}^{-1}$, the X-ray periphery can be generally reproduced. The simulation turned out that the asymmetry of the SNR RCW 103 is mainly due to the inhomogeneous medium with a density gradient.
G349.7 + 00.2 is a young Galactic supernova remnant (SNR) with a mushroom morphology in radio and X-rays, and it has been detected across the entire electromagnetic spectrum from radio to high energy $gamma$-rays. Moreover, the remnant is interacting with a molecular cloud based on the observations in the radio and infrared band. The reason for the formation of the periphery and the dynamical evolution of the remnant are investigated using 3D hydrodynamical (HD) simulations. Under the assumption that the supernova ejecta is evolved in the medium with a density gradient, the shell is composed of two hemispheres with different radiuses, and the smaller hemisphere is in relatively dense media. The resulting periphery of remnant is consistent with detected ones, and it can be concluded that the peculiar periphery of G349.7+00.2 can be reproduced as the remnants interacting with the medium with a density gradient.
On 2016 June 22, 2E 1613.5-5053, the puzzling central compact object in supernova remnant RCW 103, emitted a magnetar-like burst. Using Directors Discretionary Time, we observed 2E 1613.5-5053 with the Hubble Space Telescope (WFC3/IR) and we report here on the detection of a previously unseen infrared counterpart. In observations taken on 2016 July 4 and August 11, we detect a new source ($m_mathrm{F110W} = 26.3$ AB mag and $m_mathrm{F160W} = 24.2$ AB mag) at the Chandra position of 2E 1613.5-5053 which was not detected in HST/NICMOS images from 2002 August 15 and October 8 to a depth of 24.5 AB mag (F110W) and 25.5 AB mag (F160W). We show that these deep IR observations rule out the possibility of an accreting binary but mimic IR emission properties of magnetars and isolated neutron stars. The presence or absence of a low-mass fallback disk cannot be confirmed from our observations.
Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding environment could be one of the key parameters. The SNR RCW 86 shows both thermal and non-thermal X-ray emission with different spatial morphologies. These emission originate from the shock-heated plasma and accelerated electrons respectively, and their intensities reflect their density distributions. Thus, the remnant provides a suitable laboratory to test possible association between the acceleration efficiency and the environment. In this paper, we present results of spatially resolved spectroscopy of the entire remnant with Suzaku. The spacially-resolved spectra are well reproduced with a combination of a power-law for synchrotron emission and a two-component optically thin thermal plasma, corresponding to the shocked interstellar medium (ISM) with kT of 0.3-0.6 keV and Fe-dominated ejecta. It is discovered that the photon index of the nonthermal component becomes smaller with decreasing the emission measure of the shocked ISM, where the shock speed has remained high. This result implies that the maximum energy of accelerated electrons in RCW 86 is higher in the low-density and higher shock speed regions.
We present a proper motion study of the eastern shock-region of the supernova remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern regions, we measure an average proper motion of H-alpha filaments of 0.10 +/- 0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is substantial variation in the derived proper motions, indicating shock velocities ranging from just below 700 km/s to above 2200 km/s. The optical proper motion is lower than the previously measured X-ray proper motion of northeastern region. The new measurements are consistent with the previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no cosmic-ray acceleration. However, within the uncertainties, moderately efficient (< 27 per cent) shock acceleration is still possible. The combination of optical proper motion and proton temperature rule out the possibility that RCW 86 has a distance less than 1.5kpc. The similarity of the proper motions in the northeast and southeast is peculiar, given the different densities and X-ray emission properties of the regions. The northeastern region has lower densities and the X-ray emission is synchrotron dominated, suggesting that the shock velocities should be higher than in the southeastern, thermal X-ray dominated, region. A possible solution is that the H-alpha emitting filaments are biased toward denser regions, with lower shock velocities. Alternatively, in the northeast the shock velocity may have decreased rapidly during the past 200yr, and the X-ray synchrotron emission is an afterglow from a period when the shock velocity was higher.
We present the Suzaku results of a supernova remnant (SNR), G359.1-0.5 in the direction of the Galactic center region. From the SNR, we find prominent K-shell lines of highly ionized Si and S ions, together with unusual structures at 2.5-3.0 and 3.1-3.6 keV. No canonical SNR plasma model, in either ionization equilibrium or under-ionization, can explain the structures. The energies and shapes of the structures are similar to those of the radiative transitions of free electrons to the K-shell of He-like Si and S ions (radiative recombination continuum: RRC). The presence of the strong RRC structures indicates that the plasma is in over-ionization. In fact, the observed spectrum is well fitted with an over-ionized plasma model. The best-fit electron temperature of 0.29 keV is far smaller than the ionization temperature of 0.77 keV, which means that G359.1-0.5 is in extreme condition of over-ionization. We report some cautions on the physical parameters, and comment possible origins for the over-ionized plasma.