Do you want to publish a course? Click here

X-Ray Spectrum of a Peculiar Supernova Remnant G359.1-0.5

487   0   0.0 ( 0 )
 Added by Takao Ohnishi
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the Suzaku results of a supernova remnant (SNR), G359.1-0.5 in the direction of the Galactic center region. From the SNR, we find prominent K-shell lines of highly ionized Si and S ions, together with unusual structures at 2.5-3.0 and 3.1-3.6 keV. No canonical SNR plasma model, in either ionization equilibrium or under-ionization, can explain the structures. The energies and shapes of the structures are similar to those of the radiative transitions of free electrons to the K-shell of He-like Si and S ions (radiative recombination continuum: RRC). The presence of the strong RRC structures indicates that the plasma is in over-ionization. In fact, the observed spectrum is well fitted with an over-ionized plasma model. The best-fit electron temperature of 0.29 keV is far smaller than the ionization temperature of 0.77 keV, which means that G359.1-0.5 is in extreme condition of over-ionization. We report some cautions on the physical parameters, and comment possible origins for the over-ionized plasma.



rate research

Read More

174 - L. K. Eppens 2020
We report new CO observations and a detailed molecular-line study of the mixed morphology (MM) supernova remnant (SNR) G359.1-0.5, which contains six OH (1720 MHz) masers along the radio shell, indicative of shock-cloud interaction. Observations of 12CO and 13CO J:1-0 lines were performed in a 38x38 arcmin area with the on-the-fly technique using the Kit Peak 12 Meter telescope. The molecular study has revealed the existence of a few clumps with densities around 1,000 cm$^{-3}$ compatible in velocity and position with the OH (1720 MHz) masers. These clumps, in turn, appear to be part of a larger, elongated molecular structure ~34 arcmin long extending between -12.48 and +1.83 km/s, adjacent to the western edge of the radio shell. According to the densities and relative position with respect to the masers, we conclude that the CO clouds depict unshocked gas, as observed in other remnants with OH (1720 MHz) masers. In addition, we investigated the distribution of the molecular gas towards the adjacent gamma-ray source HESS J1745-303 but could not find any morphological correlation between the gamma-rays and the CO emission at any velocity in this region.
We report on the results of our detailed analyses on the peculiar recombining plasma of the supernova remnant (SNR) G359.1$-$0.5, and the interacting CO clouds. Combining {it Chandra} and {it Suzaku} data, we estimated the ionization state of the plasma with a careful treatment of the background spectrum. The average spectrum showed a remarkably large deviation of the electron temperature ($sim$0.17 keV) from the initial temperature ($>$ 16 keV), indicating that the plasma is in a highly recombination-dominant state. On the other hand, the recombination timescale $({it n_{rm e} t})$ is comparable to those of the other recombining SNRs ($sim4.2 times 10^{11}$ cm$^{-3}$ s). We also searched for spatial variation of the plasma parameters, but found no significant differences. Using $^{12}$CO($J$=2--1) data obtained with NANTEN2, we found a new, plausible candidate for the interacting CO cloud, which has a line-of-sight velocity of $sim -$20 km s$^{-1}$. This indicates that the SNR is located at a distance of $sim$4 kpc, which is the foreground of the Galactic center, as previously reported. The associated CO cloud does not show clear spatial coincidence with the nearby GeV/TeV emission, indicating that the origins of the GeV/TeV emission are likely unrelated to G359.1$-$0.5.
124 - Chong Ge , Ruo-Yu Liu , Shu Niu 2020
Supernova remnants (SNRs) have long been considered as one of the most promising sources of Galactic cosmic rays. In the SNR paradigm, petaelectronvolt (PeV) proton acceleration may only be feasible at the early evolution stage, lasting a few hundred years, when the SNR shock speed is high. While evidence supporting the acceleration of PeV protons in young SNRs has yet to be discovered, X-ray synchrotron emission is an important indicator of fast shock. We here report the first discovery of X-ray synchrotron emission from the possibly middle-aged SNR G106.3+2.7, implying that this SNR is still an energetic particle accelerator despite its age. This discovery, along with the ambient environmental information, multiwavelength observation, and theoretical arguments, supports SNR G106.3+2.7 as a likely powerful PeV proton accelerator.
149 - Satoru Katsuda 2010
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tychos supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0.40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0.14 yr^{-1} (m=0.26) to 0.40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.21-0.31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}.
118 - Jacco Vink 2021
The supernova remnant LMC N132D is a remarkably luminous gamma-ray emitter at $sim$50 kpc with an age of $sim$2500 years. It belongs to the small group of oxygen-rich SNRs, which includes Cassiopeia A (Cas A) and Puppis A. N132D is interacting with a nearby molecular cloud. By adding 102 hours of new observations with the High Energy Stereoscopic System (H.E.S.S.) to the previously published data with exposure time of 150 hours, we achieve the significant detection of N132D at a 5.7$sigma$ level in the very high energy (VHE) domain. The gamma-ray spectrum is compatible with a single power law extending above 10 TeV. We set a lower limit on an exponential cutoff energy at 8 TeV with 95% CL. The multi-wavelength study supports a hadronic origin of VHE gamma-ray emission indicating the presence of sub-PeV cosmic-ray protons. The detection of N132D is remarkable since the TeV luminosity is higher than that of Cas A by more than an order of magnitude. Its luminosity is comparable to, or even exceeding the luminosity of RX J1713.7-3946 or HESS J1640-465. Moreover, the extended power-law tail in the VHE spectrum of N132D is surprising given both the exponential cutoff at 3.5 TeV in the spectrum of its 340-year-old sibling, Cassiopeia A, and the lack of TeV emission from a Fermi- LAT 2FHL source (E > 50 GeV) associated with Puppis A. We discuss a physical scenario leading to the enhancement of TeV emission via the interaction between N132D and a near molecular cloud.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا