No Arabic abstract
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. In both the strong and the weak coupling regimes, we obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high-temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy of the system. Moreover, under the Markovian approximation, we obtain the expression of the quantum corrections to the total entropy production rate ${e_{rm p}}$ and the heat dissipation rate ${h_{rm d}}$. Our results bring important insights to the understanding of entropy in open quantum systems.
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluchowski equations, accounting for the effect of the quantum thermal bath oscillators. The model of Brownian emitters is theoretically studied and the relevant evolutionary equations for the probability density are derived. The Schrodinger equation is explained via collisions of the target point particles with the quantum force carriers, transmitting the fundamental interactions between the point particles. Thus, electrons and other point particles are no waves and the wavy chapter of quantum mechanics originated for the force carriers. A stochastic Lorentz-Langevin equation is proposed to describe the underlaying Brownian-like motion of the point particles in quantum mechanics. Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed, and the relevant Smoluchowski-Bohm equation is derived. A nonlinear master equation is proposed by proper quantization of the classical Klein-Kramers equation. Its equilibrium solution in the exact canonical Gibbs density operator, while the well-known Caldeira-Leggett equation is simply a linearization at high temperature. In the case of a free quantum Brownian particles, a new law for the spreading of the wave packet it discovered, which represents the quantum generalization of the classical Einstein law of Brownian motion. A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment. Its application results in dissipative Schrodinger equations, as well as in a new form of dissipative Liouville equation in classical mechanics.
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction the corresponding Smoluchowski equation is obtained. Introducing the Bohm quantum potential, this Smoluchowski equation is extended to describe the Brownian motion of a quantum particle in quantum environment.
The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to violate the positivity of the density operator at very low temperatures. We study an extension of existing models, leading to an equation in the Lindblad form, which is free of this problem. We study the dynamics of the model, including the detailed properties of its stationary solution, for both constant and position-dependent coupling of the Brownian particle to the bath, focusing in particular on the correlations and the squeezing of the probability distribution induced by the environment
The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact that the entropy of a state $rho$ can be formulated as the difference of the number of physical qubits and the relative entropy distance between $rho$ and the maximally mixed state, here we define the entropy of a channel $mathcal{N}$ as the difference of the number of physical qubits of the channel output with the relative entropy distance between $mathcal{N}$ and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put forward in [Gour, IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the environments share, gives a compelling operational interpretation of the entropy of a channel. The entropy of a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of the channel merging protocol. We define Renyi and min-entropies of a channel and prove that they satisfy the axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of the min-entropy of a channel satisfies the asymptotic equipartition property.
We study quantum coarse-grained entropy and demonstrate that the gap in entropy between local and global coarse-grainings is a natural generalization of entanglement entropy to mixed states and multipartite systems. This quantum correlation entropy $S^{rm QC}$ is additive over independent systems, is invariant under local unitary operations, measures total nonclassical correlations (vanishing on states with strictly classical correlation), and reduces to the entanglement entropy for bipartite pure states. It quantifies how well a quantum system can be understood via local measurements, and ties directly to non-equilibrium thermodynamics, including representing a lower bound on the quantum part of thermodynamic entropy production. We discuss two other measures of nonclassical correlation to which this entropy is equivalent, and argue that together they provide a unique thermodynamically distinguished measure.