Do you want to publish a course? Click here

Can Adversarial Weight Perturbations Inject Neural Backdoors?

238   0   0.0 ( 0 )
 Added by Siddhant Garg
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Adversarial machine learning has exposed several security hazards of neural models and has become an important research topic in recent times. Thus far, the concept of an adversarial perturbation has exclusively been used with reference to the input space referring to a small, imperceptible change which can cause a ML model to err. In this work we extend the idea of adversarial perturbations to the space of model weights, specifically to inject backdoors in trained DNNs, which exposes a security risk of using publicly available trained models. Here, injecting a backdoor refers to obtaining a desired outcome from the model when a trigger pattern is added to the input, while retaining the original model predictions on a non-triggered input. From the perspective of an adversary, we characterize these adversarial perturbations to be constrained within an $ell_{infty}$ norm around the original model weights. We introduce adversarial perturbations in the model weights using a composite loss on the predictions of the original model and the desired trigger through projected gradient descent. We empirically show that these adversarial weight perturbations exist universally across several computer vision and natural language processing tasks. Our results show that backdoors can be successfully injected with a very small average relative change in model weight values for several applications.



rate research

Read More

Since training a large-scale backdoored model from scratch requires a large training dataset, several recent attacks have considered to inject backdoors into a trained clean model without altering model behaviors on the clean data. Previous work finds that backdoors can be injected into a trained clean model with Adversarial Weight Perturbation (AWP). Here AWPs refers to the variations of parameters that are small in backdoor learning. In this work, we observe an interesting phenomenon that the variations of parameters are always AWPs when tuning the trained clean model to inject backdoors. We further provide theoretical analysis to explain this phenomenon. We formulate the behavior of maintaining accuracy on clean data as the consistency of backdoored models, which includes both global consistency and instance-wise consistency. We extensively analyze the effects of AWPs on the consistency of backdoored models. In order to achieve better consistency, we propose a novel anchoring loss to anchor or freeze the model behaviors on the clean data, with a theoretical guarantee. Both the analytical and the empirical results validate the effectiveness of the anchoring loss in improving the consistency, especially the instance-wise consistency.
Adversarial examples are delicately perturbed inputs, which aim to mislead machine learning models towards incorrect outputs. While most of the existing work focuses on generating adversarial perturbations in multi-class classification problems, many real-world applications fall into the multi-label setting in which one instance could be associated with more than one label. For example, a spammer may generate adversarial spams with malicious advertising while maintaining the other labels such as topic labels unchanged. To analyze the vulnerability and robustness of multi-label learning models, we investigate the generation of multi-label adversarial perturbations. This is a challenging task due to the uncertain number of positive labels associated with one instance, as well as the fact that multiple labels are usually not mutually exclusive with each other. To bridge this gap, in this paper, we propose a general attacking framework targeting on multi-label classification problem and conduct a premier analysis on the perturbations for deep neural networks. Leveraging the ranking relationships among labels, we further design a ranking-based framework to attack multi-label ranking algorithms. We specify the connection between the two proposed frameworks and separately design two specific methods grounded on each of them to generate targeted multi-label perturbations. Experiments on real-world multi-label image classification and ranking problems demonstrate the effectiveness of our proposed frameworks and provide insights of the vulnerability of multi-label deep learning models under diverse targeted attacking strategies. Several interesting findings including an unpolished defensive strategy, which could potentially enhance the interpretability and robustness of multi-label deep learning models, are further presented and discussed at the end.
Deep Neural Networks, despite their great success in diverse domains, are provably sensitive to small perturbations on correctly classified examples and lead to erroneous predictions. Recently, it was proposed that this behavior can be combatted by optimizing the worst case loss function over all possible substitutions of training examples. However, this can be prone to weighing unlikely substitutions higher, limiting the accuracy gain. In this paper, we study adversarial robustness through randomized perturbations, which has two immediate advantages: (1) by ensuring that substitution likelihood is weighted by the proximity to the original word, we circumvent optimizing the worst case guarantees and achieve performance gains; and (2) the calibrated randomness imparts differentially-private model training, which additionally improves robustness against adversarial attacks on the model outputs. Our approach uses a novel density-based mechanism based on truncated Gumbel noise, which ensures training on substitutions of both rare and dense words in the vocabulary while maintaining semantic similarity for model robustness.
Deep neural networks are powerful and popular learning models that achieve state-of-the-art pattern recognition performance on many computer vision, speech, and language processing tasks. However, these networks have also been shown susceptible to carefully crafted adversarial perturbations which force misclassification of the inputs. Adversarial examples enable adversaries to subvert the expected system behavior leading to undesired consequences and could pose a security risk when these systems are deployed in the real world. In this work, we focus on deep convolutional neural networks and demonstrate that adversaries can easily craft adversarial examples even without any internal knowledge of the target network. Our attacks treat the network as an oracle (black-box) and only assume that the output of the network can be observed on the probed inputs. Our first attack is based on a simple idea of adding perturbation to a randomly selected single pixel or a small set of them. We then improve the effectiveness of this attack by carefully constructing a small set of pixels to perturb by using the idea of greedy local-search. Our proposed attacks also naturally extend to a stronger notion of misclassification. Our extensive experimental results illustrate that even these elementary attacks can reveal a deep neural networks vulnerabilities. The simplicity and effectiveness of our proposed schemes mean that they could serve as a litmus test for designing robust networks.
Recent breakthroughs in the field of deep learning have led to advancements in a broad spectrum of tasks in computer vision, audio processing, natural language processing and other areas. In most instances where these tasks are deployed in real-world scenarios, the models used in them have been shown to be susceptible to adversarial attacks, making it imperative for us to address the challenge of their adversarial robustness. Existing techniques for adversarial robustness fall into three broad categories: defensive distillation techniques, adversarial training techniques, and randomized or non-deterministic model based techniques. In this paper, we propose a novel neural network paradigm that falls under the category of randomized models for adversarial robustness, but differs from all existing techniques under this category in that it models each parameter of the network as a statistical distribution with learnable parameters. We show experimentally that this framework is highly robust to a variety of white-box and black-box adversarial attacks, while preserving the task-specific performance of the traditional neural network model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا