In a previous paper we suggested that a macroscopic force field applied across a two-dimensional electron gas channel could induce a microscopic charge density wave as soon as the proper compressibility becomes negative, which happens at densities much higher than the critical density for the Wigner crystal transition. The suggestion was based on a calculation of the ground state energy in the local density approximation. In this paper we refine our calculation of the energy by including a self-consistent gradient correction to the kinetic energy. Due to the increased energy cost of rapid density variations, we find a much lower critical density for the onset of the charge density wave. This critical density coincides with the result of a linear stability analysis of the uniform ground state in the absence of the electric field.
We show that the negative electronic compressibility of two-dimensional electronic systems at sufficiently low density enables the generation of charge density waves through the application of a uniform force field, provided no current is allowed to flow. The wavelength of the density oscillations is controlled by the magnitude of the (negative) screening length, and their amplitude is proportional to the applied force. Both are electrically tunable.
We study both static and transport properties of model quantum dots, employing density functional theory as well as (numerically) exact methods. For the lattice model under consideration the accuracy of the local-density approximation generally is poor. For weak interaction, however, accurate results are achieved within the optimized effective potential method, while for intermediate interaction strengths a method combining the exact diagonalization of small clusters with density functional theory is very successful. Results obtained from the latter approach yield very good agreement with density matrix renormalization group studies, where the full Hamiltonian consisting of the dot and the attached leads has to be diagonalized. Furthermore we address the question whether static density functional theory is able to predict the exact linear conductance through the dot correctly - with, in general, negative answer.
The layered transition metal dichalcogenides host a rich collection of charge density wave (CDW) phases in which both the conduction electrons and the atomic structure display translational symmetry breaking. Manipulating these complex states by purely electronic methods has been a long-sought scientific and technological goal. Here, we show how this can be achieved in 1T-TaS2 in the two-dimensional (2D) limit. We first demonstrate that the intrinsic properties of atomically-thin flakes are preserved by encapsulation with hexagonal boron nitride in inert atmosphere. We use this facile assembly method together with TEM and transport measurements to probe the nature of the 2D state and show that its conductance is dominated by discommensurations. The discommensuration structure can be precisely tuned in few-layer samples by an in-plane electric current, allowing continuous electrical control over the discommensuration-melting transition in 2D.
We have developed a scanning photoluminescence technique that can directly map out the local two-dimensional electron density with a relative accuracy of $sim2.2times10^8$ cm$^{-2}$. The validity of this approach is confirmed by the observation of the expected density gradient in a high-quality GaAs quantum well sample that was not rotated during the molecular beam epitaxy of its spacer layer. In addition to this global variation in electron density, we observe local density fluctuations across the sample. These random density fluctuations are also seen in samples that were continuously rotated during growth, and we attribute them to residual space charges at the substrate-epitaxy interface. This is corroborated by the fact that the average magnitude of density fluctuations is increased to $sim9times10^{9}$ cm$^{-2}$ from $sim1.2times10^9$ cm$^{-2}$ when the buffer layer between the substrate and the quantum well is decreased by a factor of seven. Our data provide direct evidence for local density inhomogeneities even in very high-quality two-dimensional carrier systems.
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the direction of the density modulation is observed, i.e. perpendicular to the applied source-drain voltage. The polarity of the transverse voltage is independent of the polarity of the source-drain voltage, demonstrating rectification in the device. We find that the transverse voltage $U_{y}$ depends quadratically on the applied source-drain voltage and non-monotonically on the density modulation. The experimental results are discussed in the framework of a diffusion thermopower model.
Erica Hroblak
,Mohammad Zarenia
,
.
(2020)
.
"Electrically induced charge-density waves in a two-dimensional electron channel: Beyond the Local Density Approximation"
.
Mohammad Zarenia
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا