Do you want to publish a course? Click here

Low-Power Optical Traps using Anisotropic Metasurfaces: Asymmetric Potential Barriers and Broadband Response

105   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose the optical trapping of Rayleigh particles using tailored anisotropic and hyperbolic metasurfaces illuminated with a linearly polarized Gaussian beam. This platform permits to engineer optical traps at the beam axis with a response governed by nonconservative and giant recoil forces coming from the directional excitation of ultra-confined surface plasmons during the light scattering process. Compared to optical traps set over bulk metals, the proposed traps are broadband in the sense that can be set with beams oscillating at any frequency within the wide range in which the metasurface supports surface plasmons. Over that range, the metasurface evolves from an anisotropic elliptic to a hyperbolic regime through a topological transition and enables optical traps with distinctive spatially asymmetric potential distribution, local potential barriers arising from the momentum imbalance of the excited plasmons, and an enhanced potential depth that permits the stable trapping of nanoparticles using low-intensity laser beams. To investigate the performance of this platform, we develop a rigorous formalism based on the Lorentz force within the Rayleigh approximation combined with anisotropic Greens functions and calculate the trapping potential of nonconservative forces using the Helmholtz-Hodge decomposition method. Tailored anisotropic and hyperbolic metasurfaces, commonly implemented by nanostructuring thin metallic layers, enables using low-intensity laser sources operating in the visible or the IR to trap and manipulate particles at the nanoscale, and may enable a wide range of applications in bioengineering, physics, and chemistry.



rate research

Read More

We grow accustomed to the notion that optical susceptibilities can be treated as a local property of a medium. In the context of nonlinear optics, both Kerr and Raman processes are considered local, meaning that optical fields at one location do not produce a nonlinear response at distinct locations in space. This is because the electronic and phononic disturbances produced within the material are confined to a region that is smaller than an optical wavelength. By comparison, Brillouin interactions can result in a highly nonlocal nonlinear response, as the elastic waves generated through the Brillouin process can occupy a region in space much larger than an optical wavelength. The nonlocality of these interactions can be exploited to engineer new types of processes, where highly delocalized phonon modes serve as an engineerable channel that mediates scattering processes between light waves propagating in distinct optical waveguides. These types of nonlocal optomechanical responses have been recently demonstrated as the basis for information transduction, however the nontrivial dynamics of such systems has yet to be explored. In this work, we show that the third-order nonlinear process resulting from spatially extended Brillouin-active phonon modes involves mixing products from spatially separated, optically decoupled waveguides, yielding a nonlocal joint-susceptibility. We further explore the coupling of multiple acoustic modes and show that multi-mode acoustic interference enables a tailorable nonlocal-nonlinear susceptibility, exhibiting a multi-pole frequency response.
An optical equivalent of the field-programmable gate array (FPGA) is of great interest to large-scale photonic integrated circuits. Previous programmable photonic devices relying on the weak, volatile thermo-optic or electro-optic effect usually suffer from a large footprint and high energy consumption. Phase change materials (PCMs) offer a promising solution due to the large non-volatile change in the refractive index upon phase transition. However, the large optical loss in PCMs poses a serious problem. Here, by exploiting an asymmetric directional coupler design, we demonstrate PCM-clad silicon photonic 1 times 2 and 2 times 2 switches with a low insertion loss of ~1 dB and a compact coupling length of ~30 {mu}m while maintaining a small crosstalk less than ~10 dB over a bandwidth of 30 nm. The reported optical switches will function as the building blocks of the meshes in the optical FPGAs for applications such as optical interconnects, neuromorphic computing, quantum computing, and microwave photonics.
The levitation of condensed matter in vacuum allows the study of its physical properties under extreme isolation from the environment. It also offers a venue to investigate quantum mechanics with large systems, at the transition between the quantum and classical worlds. In this work, we study a novel hybrid levitation platform that combines a Paul trap with a weak but highly focused laser beam, a configuration that integrates a deep potential with excellent confinement and motion detection. We combine simulations and experiments to demonstrate the potential of this approach to extend vacuum trapping and interrogation to a broader range of nanomaterials, such as absorbing particles. We study the stability and dynamics of different specimens, like fluorescent dielectric crystals and gold nanorods, and demonstrate stable trapping down to pressures of 1 mbar.
The possibility of making an object invisible for detectors has become a topic of considerable interest over the past decades. Most of the studies so far focused on reducing the visibility by reshaping the electromagnetic scattering in the spatial domain. In fact, by manipulating the electromagnetic scattering in the time domain, the visibility of an object can also be reduced. Importantly, unlike previous studies on phase-switched screens and time-varying metasurfaces, where the effect is narrow band due to the dispersive resonance, for microwave frequency range, we introduce a broadband switchable metasurface integrated with p-i-n diodes. The reflection phase of the metasurface can be changed by approximately {pi} over a fractional bandwidth of 76%. By modulating the metasurface quasirandomly in the time domain, the incident narrow-band signal is spread into a white-noiselike spectrum upon reflection, creating a spectral camouflage. The broadband feature of the proposed time-varying metasurface can provide practical insight for various applications, including radar stealth and ultrawide-band wireless communication.
We introduce chiral gradient metasurfaces that allow perfect transmission of all the incident wave into a desired direction and simultaneous perfect rotation of the polarization of the refracted wave with respect to the incident one. Besides using gradient polarization densities which provide bending of the refracted wave with respect to the incident one, using metasurface inclusions that are chiral allows the polarization of the refracted wave to be rotated. We suggest a possible realization of the proposed device by discretizing the required equivalent surface polarization densities realized by proper helical inclusions at each discretization point. By only using a single optically thin layer of chiral inclusions, we are able to unprecedentedly deflect a normal incident plane wave to a refracted plane wave at $45^{circ}$ with $72%$ power efficiency which is accompanied by a $90^{circ}$ polarization rotation. The proposed concepts and design method may find practical applications in polarization rotation devices at microwaves as well as in optics, especially when the incident power is required to be deflected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا