Do you want to publish a course? Click here

Low-loss and broadband non-volatile phase-change directional coupler switches

205   0   0.0 ( 0 )
 Added by Arka Majumdar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

An optical equivalent of the field-programmable gate array (FPGA) is of great interest to large-scale photonic integrated circuits. Previous programmable photonic devices relying on the weak, volatile thermo-optic or electro-optic effect usually suffer from a large footprint and high energy consumption. Phase change materials (PCMs) offer a promising solution due to the large non-volatile change in the refractive index upon phase transition. However, the large optical loss in PCMs poses a serious problem. Here, by exploiting an asymmetric directional coupler design, we demonstrate PCM-clad silicon photonic 1 times 2 and 2 times 2 switches with a low insertion loss of ~1 dB and a compact coupling length of ~30 {mu}m while maintaining a small crosstalk less than ~10 dB over a bandwidth of 30 nm. The reported optical switches will function as the building blocks of the meshes in the optical FPGAs for applications such as optical interconnects, neuromorphic computing, quantum computing, and microwave photonics.



rate research

Read More

Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, the integration of PCMs with nanophotonic structures has introduced a new paradigm for non-volatile reconfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5 in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3 has recently emerged as a wide-bandgap PCM with transparency windows ranging from 610nm to near-IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3 are experimentally demonstrated for the first time in integrated photonic platforms at both 750nm and 1550nm. As opposed to silicon, the thermo-optic coefficient of Sb2S3 is shown to be negative, making the Sb2S3-Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3 integrated non-volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30dB. Our work experimentally verified the prominent phase modification and low loss of Sb2S3 in wavelength ranges relevant for both solid-state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post-fabrication trimming, and large-scale integrated quantum photonic network.
Active metasurfaces promise reconfigurable optics with drastically improved compactness, ruggedness, manufacturability, and functionality compared to their traditional bulk counterparts. Optical phase change materials (O-PCMs) offer an appealing material solution for active metasurface devices with their large index contrast and nonvolatile switching characteristics. Here we report what we believe to be the first electrically reconfigurable nonvolatile metasurfaces based on O-PCMs. The O-PCM alloy used in the devices, Ge2Sb2Se4Te1 (GSST), uniquely combines giant non-volatile index modulation capability, broadband low optical loss, and a large reversible switching volume, enabling significantly enhanced light-matter interactions within the active O-PCM medium. Capitalizing on these favorable attributes, we demonstrated continuously tunable active metasurfaces with record half-octave spectral tuning range and large optical contrast of over 400%. We further prototyped a polarization-insensitive phase-gradient metasurface to realize dynamic optical beam steering.
Electro-optic phase modulators are critical components in modern communication, microwave photonic, and quantum photonic systems. Important for these applications is to achieve modulators with low half-wave voltage at high frequencies. Here we demonstrate an integrated phase modulator, based on a thin-film lithium niobate platform, that simultaneously features small on-chip loss (~ 1 dB) and low half-wave voltage over a large spectral range (3.5 - 4.5 V at 5 - 40 GHz). By driving the modulator with a strong 30-GHz microwave signal corresponding to around four half-wave voltages, we generate an optical frequency comb consisting of over 40 sidebands spanning 10 nm in the telecom L-band. The high electro-optic performance combined with the high RF power-handling ability (3.1 W) of our integrated phase modulator are crucial for future photonics and microwave systems.
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide waveguide to a 1 um wide photonic wire. The taper has a spectral response > 75% spanning over 800 nm and resilience to fabrication variations; >200 nm change in taper and end waveguide width varies transmission by <5%. We experimentally demonstrate taper insertion loss of <0.1 dB/transition for a taper as short as 19.5 um, and reduces the footprint of the photonic device by 50.8% compared to the standard adiabatic taper. To the best of our knowledge, the proposed taper is the shortest waveguide taper ever reported in Silicon Nitride.
A highly sensitive refractive index sensor based on grating-assisted strip waveguide directional coupler is proposed. The sensor is designed using two coupled asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. Maximum light couples from one waveguide to the other at the resonance wavelength, and the change in resonance wavelength with the change in refractive index of the medium in the cover region is a measure of the sensitivity. The proposed sensor would be an on-chip device with a high refractive index sensitivity of ~ 104 nm/RIU, and negligible temperature sensitivity (< 1nm/0C). The sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Variation of the sensitivity with the waveguide parameters of the proposed sensor have been studied to optimize the design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا