Do you want to publish a course? Click here

Muon Spin Relaxation and fluctuating magnetism in the pseudogap phase of YBa$_{2}$Cu$_{3}$O$_{y}$

300   0   0.0 ( 0 )
 Added by Lei Shu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results of a muon spin relaxation study of slow magnetic fluctuations in the pseudogap phase of underdoped single-crystalline YBa$_{2}$Cu$_{3}$O$_{y}$, $y = 6.77$ and 6.83. The dependence of the dynamic muon spin relaxation rate on applied magnetic field yields the rms magnitude~$Bmathrm{_{loc}^{rms}}$ and correlation time~$tau_c$ of fluctuating local fields at muon sites. The observed relaxation rates do not decrease with decreasing temperature~$T$ below the pseudogap onset at $T^ast$, as would be expected for a conventional magnetic transition; both $Bmathrm{_{loc}^{rms}}$ and $tau_c$ are roughly constant in the pseudogap phase down to the superconducting transition. Corresponding NMR relaxation rates are estimated to be too small to be observable. Our results put strong constraints on theories of the anomalous pseudogap magnetism in YBa$_{2}$Cu$_{3}$O$_{y}$.



rate research

Read More

84 - B. Nafradi , T. Keller , F. Hardy 2016
We have used high-resolution neutron Larmor diffraction and capacitative dilatometry to investigate spontaneous and forced magnetostriction in undoped, antiferromagnetic YBa$_2$Cu$_3$O$_{6.0}$, the parent compound of a prominent family of high-temperature superconductors. Upon cooling below the Neel temperature, $T_N = 420$~K, Larmor diffraction reveals the formation of magneto-structural domains of characteristic size $sim 240$~nm. In the antiferromagnetic state, dilatometry reveals a minute ($4 times 10^{-6}$) orthorhombic distortion of the crystal lattice in external magnetic fields. We attribute these observations to exchange striction and spin-orbit coupling induced magnetostriction, respectively, and show that they have an important influence on the thermal and charge transport properties of undoped and lightly doped cuprates.
117 - L. Zhao , C. A. Belvin , R. Liang 2016
The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low energy electronic excitations. Polarized neutron diffraction, Nernst effect, THz polarimetery and ultrasound measurements on YBa$_2$Cu$_3$O$_y$ suggest that the pseudogap onset below a temperature T* coincides with a bona fide thermodynamic phase transition that breaks time-reversal, four-fold rotation and mirror symmetries respectively. However, the full point group above and below T* has not been resolved and the fate of this transition as T* approaches the superconducting critical temperature T$_c$ is poorly understood. Here we reveal the point group of YBa$_2$Cu$_3$O$_y$ inside its pseudogap and neighboring regions using high sensitivity linear and second harmonic optical anisotropy measurements. We show that spatial inversion and two-fold rotational symmetries are broken below T* while mirror symmetries perpendicular to the Cu-O plane are absent at all temperatures. This transition occurs over a wide doping range and persists inside the superconducting dome, with no detectable coupling to either charge ordering or superconductivity. These results suggest that the pseudogap region coincides with an odd-parity order that does not arise from a competing Fermi surface instability and exhibits a quantum phase transition inside the superconducting dome.
138 - O. P. Sushkov 2011
The present work addresses YBa$_{2}$Cu$_{3}$O$_{y}$ at doping below x=6% where the compound is a collinear antiferromagnet. In this region YBa$_{2}$Cu$_{3}$O$_{y}$ is a normal conductor with a finite resistivity at zero temperature. The value of the staggered magnetization at zero temperature is 0.6mu_B, the maximum value allowed by spin quantum fluctuations. The staggered magnetization is almost independent of doping. On the other hand, the Neel temperature decays very quickly from T_N=420K at x=0 to practically zero at x = 0.06. The present paper explains these remarkable properties and demonstrates that the properties result from the physics of a lightly doped Mott insulator with small hole pockets. Nuclear quadrupole resonance data are also discussed. The data shed light on mechanisms of stability of the antiferromagnetic order at x < 6%.
189 - W. Wang , J. Luo , C. G. Wang 2020
Understanding the nature of the mysterious pseudogap phenomenon is one of the most important issues associated with cuprate high-$T_c$ superconductors. Here, we report $^{17}$O nuclear magnetic resonance (NMR) studies on two planar oxygen sites in stoichiometric cuprate YBa$_2$Cu$_4$O$_8$ to investigate the symmetry breaking inside the pseudogap phase. We observe that the Knight shifts of the two oxygen sites are identical at high temperatures but different below $T_{rm nem} sim$ 185 K, which is close to the pseudogap temperature $T^{ast}$. Our result provides a microscopic evidence for intra-unit-cell electronic nematicity. The difference in quadrupole resonance frequency between the two oxygen sites is unchanged below $T_{rm nem}$, which suggests that the observed nematicity does not directly stem from the local charge density modulation. Furthermore, a short-range charge density wave (CDW) order is observed below $T simeq$ 150 K. The additional broadening in the $^{17}$O-NMR spectra because of this CDW order is determined to be inequivalent for the two oxygen sites, which is similar to that observed in case of nematicity. These results suggest a possible connection between nematicity, CDW order, and pseudogap.
535 - H. Kuroe , K. Aoki , T. Sato 2013
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the ferroelectricity coexist. The asymmetry time spectra taken at RIKEN-RAL pulsed muon facility show a drastic change at $T_{rm N}$. At low temperatures the weakly beating oscillation caused by the static internal magnetic fields in the antiferromagnetic phase was observed in Cu$_{3}$Mo$_{2}$O$_{9}$ and the lightly ($0.5%$) Zn-doped sample. From the fitting of the oscillating term, we obtain the order parameter in these samples: ferromagnetic moment in two sublattices of antiferromagnet. In the heavily ($5.0%$) Zn-doped sample, the muon-spin oscillation is rapidly damped. The frequency-domain spectrum of this sample suggests a formation of magnetic superstructure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا