We present a finite element based variational interface-preserving and conservative phase-field formulation for the modeling of incompressible two-phase flows with surface tension dynamics. The preservation of the hyperbolic tangent interface profile of the convective Allen-Cahn phase-field formulation relies on a novel time-dependent mobility model. The mobility coefficient is adjusted adaptively as a function of gradients of the velocity and the order parameter in the diffuse interface region in such a way that the free energy minimization properly opposes the convective distortion. The ratio of the convective distortion to the free energy minimization is termed as the convective distortion parameter, which characterizes the deviation from the hyperbolic tangent shape due to the convection effect. The mass conservation is achieved by enforcing a Lagrange multiplier with both temporal and spatial dependence on the phase-field function. We integrate the interface-preserving and conservative phase-field formulation with the incompressible Navier-Stokes equations and the continuum surface tension force model for the simulation of incompressible two-phase flows. A positivity preserving scheme designed for the boundedness and stability of the solution is employed for the variational discretization using unstructured finite elements. We examine the convergence and accuracy of the Allen-Cahn phase-field solver through a generic one-dimensional bistable diffusion-reaction system in a stretching flow. We quantify and systematically assess the relative interface thickness error and the relative surface tension force error with respect to the convective distortion parameter. Two- and three-dimensional rising bubble cases are further simulated to examine the effectiveness of the proposed model on the volume-preserving mean curvature flow and the interface-preserving capability.
In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn--Hilliard--Navier--Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consists of a Poisson problem with a modified right-hand side. Spatial discretization is based on discontinuous Galerkin methods with piecewise linear or piecewise quadratic polynomials. Flux and slope limiting techniques successfully eliminate the bulk shift, overshoot and undershoot in the order parameter, which is shown to be bound-preserving. Several numerical results demonstrate that the proposed numerical algorithm is effective and robust for modeling two-component immiscible flows in porous structures and digital rocks.
We extend the positivity-preserving method of Zhang & Shu (2010, JCP, 229, 3091-3120) to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function $f$; i.e., $fin[0,1]$. The combination of suitable CFL conditions and the use of the high-order limiter proposed in Zhang & Shu (2010) is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments --- including one example in spherical symmetry adopting the Schwarzschild metric --- demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
In this paper, we develop an efficient lattice Boltzmann (LB) model for simulating immiscible incompressible $N$-phase flows $(N geq 2)$ based on the Cahn-Hilliard phase field theory. In order to facilitate the design of LB model and reduce the calculation of the gradient term, the governing equations of the $N$-phase system are reformulated, and they satisfy the conservation of mass, momentum and the second law of thermodynamics. In the present model, $(N-1)$ LB equations are employed to capture the interface, and another LB equation is used to solve the Navier-Stokes (N-S) equations, where a new distribution function for the total force is delicately designed to reduce the calculation of the gradient term. The developed model is first validated by two classical benchmark problems, including the tests of static droplets and the spreading of a liquid lens, the simulation results show that the current LB model is accurate and efficient for simulating incompressible $N$-phase fluid flows. To further demonstrate the capability of the LB model, two numerical simulations, including dynamics of droplet collision for four fluid phases and dynamics of droplets and interfaces for five fluid phases, are performed to test the developed model. The results show that the present model can successfully handle complex interactions among $N$ ($N geq 2$) immiscible incompressible flows.
Phase field methods have been widely used to study phase transitions and polarization switching in ferroelectric thin films. In this paper, we develop an efficient numerical scheme for the variational phase field model based on variational forms of the electrostatic energy and the relaxation dynamics of the polarization vector. The spatial discretization combines the Fourier spectral method with the finite difference method to handle three-dimensional mixed boundary conditions. It allows for an efficient semi-implicit discretization for the time integration of the relaxation dynamics. This method avoids explicitly solving the electrostatic equilibrium equation (a Poisson equation) and eliminates the use of associated Lagrange multipliers. We present several numerical examples including phase transitions and polarization switching processes to demonstrate the effectiveness of the proposed method.
In this paper we report on 2D numerical simulations concerning linear and nonlinear evolution of surface-tension-driven instability in two-fluid systems heated from below using classical and phase-field models. In the phase-field formalism, one introduces an order parameter called phase-field function to characterize thermodynamically the phases. All the system parameters are assumed to vary continuously from one fluid bulk to another (as linear functions of the phase-field). The Navier-Stokes equation (with some extra terms) and the heat equation are written only once for the whole system. The evolution of the phase-field is described by the Cahn-Hilliard equation. In the sharp-interface limit the results found by the phase-field formalism recover the results given by the classical formulation.
Xiaoyu Mao
,Vaibhav Joshi
,Rajeev Jaiman
.
(2020)
.
"A variational interface-preserving and conservative phase-field method for the surface tension effect in two-phase flows"
.
Xiaoyu Mao
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا