Do you want to publish a course? Click here

Powerful ionized gas outflows in the interacting radio galaxy 4C +29.30

223   0   0.0 ( 0 )
 Added by Guilherme S. Couto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ionized gas excitation and kinematics in the inner $4.3 times 6.2$ kpc$^{2}$ of the merger radio galaxy 4C +29.30. Using optical integral field spectroscopy with the Gemini North Telescope, we present flux distributions, line-ratio maps, peak velocities and velocity dispersion maps as well as channel maps with a spatial resolution of $approx 955$ pc. We observe high blueshifts of up to $sim -650$ km s$^{-1}$, in a region $sim 1$ south of the nucleus (the southern knot, SK), which also presents high velocity dispersions ($sim 250$ km s$^{-1}$), which we attribute to an outflow. A possible redshifted counterpart is observed north from the nucleus (the northern knot, NK). We propose that these regions correspond to a bipolar outflow possibly due to the interaction of the radio jet with the ambient gas. We estimate a total ionized gas mass outflow rate of $dot{M}_{out} = 25.4 substack{+11.5 -7.5}$ M$_odot$ yr$^{-1}$ with a kinetic power of $dot{E} = 8.1 substack{+10.7 -4.0} times 10^{42}$ erg s$^{-1}$, which represents $5.8 substack{+7.6 -2.9} %$ of the AGN bolometric luminosity. These values are higher than usually observed in nearby active galaxies with the same bolometric luminosities and could imply a significant impact of the outflows in the evolution of the host galaxy. The excitation is higher in the NK (that correlates with extended X-ray emission, indicating the presence of hotter gas) than in the SK, supporting a scenario in which an obscuring dust lane is blocking part of the AGN radiation to reach the southern region of the galaxy.



rate research

Read More

Low excitation radio galaxies (LERGs) are weakly accreting active galactic nuclei (AGN) believed to be fuelled by radiatively inefficient accretion processes. Despite this, recent works have shown evidence for ionized and neutral hydrogen gas outflows in these galaxies. To investigate the potential drivers of such outflows we select a sample of 802 LERGs using the Best & Heckman (2012) catalogue of radio galaxies. By modelling the [O III] $lambda 5007$ profile in Sloan Digital Sky Survey spectra of a sample of 802 LERGs, we determine that the ionized outflows are present in $sim 1.5%$ of the population. Using $1.4~text{GHz}$ imaging from the Faint Images of the Radio Sky at Twenty Centimeters survey we analyze the radio morphology of LERGs with outflows and find these to be consistent with the parent LERG population. However, we note that unlike the majority of the LERG population, those LERGs showing outflows have Eddington scaled accretion rates close to $1%$. This is indicative that ionized outflows in LERGs are driven by the radiation pressure from the accretion disk of the AGN rather than the radio jets. We report specific star formation rates in the range of $10^{-12} < text{sSFR} < 10^{-9}~text{yr}^{-1}$. Moreover, we observe higher mass outflow rates of $7-150~M_{odot}~text{yr}^{-1}$ for these LERGs than luminous quasars for a given bolometric luminosity, which could possibly be due to the radio source in LERGs boosting the mass-loading. This scenario could indicate that these outflows could potentially drive feedback in LERGs.
We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z=0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N(H)=3.95 (+0.27/-0.33)x10^23 atoms/cm^2) with an unabsorbed luminosity of L(2-10 keV) ~ (5.08 +/-0.52) 10^43 erg/s characteristic of Type 2 AGN. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlated with radio structures along the main radio axis indicating a strong relation between the two. The X-ray emission beyond the radio source correlates with the morphology of optical line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT ~ 0.5 with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray emitting gas in the outermost regions suggest the hot ISM is slightly under-pressured with respect to the cold optical-line emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.
Massive outflows of neutral atomic hydrogen (HI) have been observed in absorption in a number of radio galaxies and are considered a signature of AGN feedback. These outflows on kpc-scales have not been investigated in great detail as they require high-angular resolution observations to be spatially resolved. In some radio AGN, they are likely the result of the radio jets interacting with the interstellar medium. We have used a global VLBI array to map the HI outflow in a small sample of young and restarted radio galaxies which we previously observed with the VLA and the WSRT at lower resolution. Here, we report on our findings for 4C52.37 and 3C293 and we discuss the sample including the previously published sources 4C12.50 and 3C236. For 4C52.37, we present the first-ever HI VLBI observation which recovered the majority of the outflowing HI gas in form of clouds towards the central 100pc of the AGN. The clouds are blue-shifted by up to 600km/s with respect to the systemic velocity. 3C293 is largely resolved out in our VLBI observation, but we detect, towards the VLBI core, some outflowing HI gas blueshifted with respect to the systemic velocity by up to 300km/s. We also find indications that the HI outflow is extended. Overall, we find that the fraction of HI gas recovered by our VLBI observation varies significantly within our sample. In all cases we find evidence for a clumpy structure of both the outflowing and the quiescent gas, consistent with predictions from numerical simulations. The outflows include at least a component of relatively compact clouds (10^4-10^5Msun) often observed already at a few tens of pc (in projection) from the core. We also find indications that the HI outflow might have a diffuse component, especially in larger sources. Our results support the interpretation that we observe these AGNs at different stages in the evolution of the jet-ISM interaction.
142 - M. A. Sobolewska 2012
We present results from a study of a nuclear emission of a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton (~17 ksec) and Chandra (~300 ksec) data, and archival Swift/BAT data from the 58-month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power-law (Gamma ~ 1.56) modified by a cold absorber with an intrinsic column density N_{H,z} ~ 5x10^{23} cm^{-2}, and its reflection (|Omega/2pi| ~ 0.3) from a neutral matter including a narrow iron Kalpha emission line at the rest frame energy ~6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N^{refl}_{H,z} < 2.5x10^{22} cm^{-2}. The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power-law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature ~0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of `hidden AGN containing a geometrically thick torus. However, unlike the majority of them, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and the one between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with ~10^8 M_{Sun} mass.
We present a systematic study of ionized gas outflows based on the velocity shift and dispersion of the [O III] {lambda}5007 $AA$ emission line, using a sample of ~ 5000 Type 1 AGNs at z < 0.3 selected from Sloan Digital Sky Survey. This analysis is supplemented by the gas kinematics of Type 2 AGNs from Woo et al. (2016). For the majority of Type 1 AGNs (i.e., ~ 89%), the [O III] line profile is best represented by a double Gaussian model, presenting the kinematic signature of the non-virial motion. Blueshifted [O III] is more frequently detected than redshifted [O III] by a factor of 3.6 in Type 1 AGNs, while the ratio between blueshifted to redshifted [O III] is only 1.08 in Type 2 AGNs due to the projection and orientation effect. The fraction of AGNs with outflow signatures is found to increase steeply with [O III] luminosity and Eddington ratio, while Type 1 AGNs have larger velocity dispersion and more negative velocity shift than Type 2 AGNs. The [O III] velocity - velocity dispersion (VVD) diagram of Type 1 AGNs expands towards higher values with increasing luminosity and Eddington ratio, suggesting that the radiation pressure or wind is the main driver of gas outflows, as similarly found in Type 2 AGNs. In contrast, the kinematics of gas outflows is not directly linked to the radio activity of AGN.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا