No Arabic abstract
We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z=0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N(H)=3.95 (+0.27/-0.33)x10^23 atoms/cm^2) with an unabsorbed luminosity of L(2-10 keV) ~ (5.08 +/-0.52) 10^43 erg/s characteristic of Type 2 AGN. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlated with radio structures along the main radio axis indicating a strong relation between the two. The X-ray emission beyond the radio source correlates with the morphology of optical line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT ~ 0.5 with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray emitting gas in the outermost regions suggest the hot ISM is slightly under-pressured with respect to the cold optical-line emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.
We present results from a study of a nuclear emission of a nearby radio galaxy, 4C+29.30, over a broad 0.5-200 keV X-ray band. This study used new XMM-Newton (~17 ksec) and Chandra (~300 ksec) data, and archival Swift/BAT data from the 58-month catalog. The hard (>2 keV) X-ray spectrum of 4C+29.30 can be decomposed into an intrinsic hard power-law (Gamma ~ 1.56) modified by a cold absorber with an intrinsic column density N_{H,z} ~ 5x10^{23} cm^{-2}, and its reflection (|Omega/2pi| ~ 0.3) from a neutral matter including a narrow iron Kalpha emission line at the rest frame energy ~6.4 keV. The reflected component is less absorbed than the intrinsic one with an upper limit on the absorbing column of N^{refl}_{H,z} < 2.5x10^{22} cm^{-2}. The X-ray spectrum varied between the XMM-Newton and Chandra observations. We show that a scenario invoking variations of the normalization of the power-law is favored over a model with variable intrinsic column density. X-rays in the 0.5-2 keV band are dominated by diffuse emission modeled with a thermal bremsstrahlung component with temperature ~0.7 keV, and contain only a marginal contribution from the scattered power-law component. We hypothesize that 4C+29.30 belongs to a class of `hidden AGN containing a geometrically thick torus. However, unlike the majority of them, 4C+29.30 is radio-loud. Correlations between the scattering fraction and Eddington luminosity ratio, and the one between black hole mass and stellar velocity dispersion, imply that 4C+29.30 hosts a black hole with ~10^8 M_{Sun} mass.
This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from SDSS/FIRST data and possessing a wide range of radio and CIV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. We also include in our sample 9 additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshot and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both disk-corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.
We report on deep Chandra X-ray Telescope imaging observations of 4C 63.20, one of the few known radio galaxies at z>3.5. The X-ray counterpart is resolved into a core plus two off-nuclear sources that (combined) account for close to 30% of the total X-ray flux. Their morphology and orientation are consistent with a diffuse, lobe-like nature, albeit compact hotspots cannot be ruled out. The broadband spectral energy distribution of 4C 63.20 can be reproduced with a jet model where the majority of the radio flux can be ascribed to synchrotron emission from the hotspots, whereas the (non-nuclear) X-ray emission is produced via Inverse Compton (IC) off of Cosmic Microwave Background (CMB) photons within the extended lobes. This scenario is broadly consistent with the expectation from highly magnetized lobes in a hotter CMB, and supports the view that IC/CMB may quench less extreme radio lobes at high redshifts.
On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of dM/dt<10^-8 (w/100 km/s) [M_solar/yr] from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cut-off of 183$_{-35}^{+51}$ keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed with an inner radius of $R_mathrm{in}=4-180,R_mathrm{g}$. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.