Do you want to publish a course? Click here

Stochastic approximation algorithms for superquantiles estimation

126   0   0.0 ( 0 )
 Added by Manon Costa
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to two different two-time-scale stochastic approximation algorithms for superquantile estimation. We shall investigate the asymptotic behavior of a Robbins-Monro estimator and its convexified version. Our main contribution is to establish the almost sure convergence, the quadratic strong law and the law of iterated logarithm for our estimates via a martingale approach. A joint asymptotic normality is also provided. Our theoretical analysis is illustrated by numerical experiments on real datasets.



rate research

Read More

97 - Fabien Panloup 2019
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.
In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Lo`eve expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity using Bayes estimators. We also construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and stochastic analysis on Gaussian space, in which superharmonic functionals of the process paths play a particular role. Our results are illustrated by numerical simulations and extend the construction of James-Stein type estimators for Gaussian processes by Berger and Wolper.
The coefficient function of the leading differential operator is estimated from observations of a linear stochastic partial differential equation (SPDE). The estimation is based on continuous time observations which are localised in space. For the asymptotic regime with fixed time horizon and with the spatial resolution of the observations tending to zero, we provide rate-optimal estimators and establish scaling limits of the deterministic PDE and of the SPDE on growing domains. The estimators are robust to lower order perturbations of the underlying differential operator and achieve the parametric rate even in the nonparametric setup with a spatially varying coefficient. A numerical example illustrates the main results.
This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
We deal with a planar random flight ${(X(t),Y(t)),0<tleq T}$ observed at $n+1$ equidistant times $t_i=iDelta_n,i=0,1,...,n$. The aim of this paper is to estimate the unknown value of the parameter $lambda$, the underlying rate of the Poisson process. The planar random flights are not markovian, then we use an alternative argument to derive a pseudo-maximum likelihood estimator $hat{lambda}$ of the parameter $lambda$. We consider two different types of asymptotic schemes and show the consistency, the asymptotic normality and efficiency of the estimator proposed. A Monte Carlo analysis for small sample size $n$ permits us to analyze the empirical performance of $hat{lambda}$. A different approach permits us to introduce an alternative estimator of $lambda$ which is consistent, asymptotically normal and asymptotically efficient without the request of other assumptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا