Do you want to publish a course? Click here

Nonparametric estimation for linear SPDEs from local measurements

121   0   0.0 ( 0 )
 Added by Randolf Altmeyer
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The coefficient function of the leading differential operator is estimated from observations of a linear stochastic partial differential equation (SPDE). The estimation is based on continuous time observations which are localised in space. For the asymptotic regime with fixed time horizon and with the spatial resolution of the observations tending to zero, we provide rate-optimal estimators and establish scaling limits of the deterministic PDE and of the SPDE on growing domains. The estimators are robust to lower order perturbations of the underlying differential operator and achieve the parametric rate even in the nonparametric setup with a spatially varying coefficient. A numerical example illustrates the main results.



rate research

Read More

This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
Suppose that particles are randomly distributed in $bR^d$, and they are subject to identical stochastic motion independently of each other. The Smoluchowski process describes fluctuations of the number of particles in an observation region over time. This paper studies properties of the Smoluchowski processes and considers related statistical problems. In the first part of the paper we revisit probabilistic properties of the Smoluchowski process in a unified and principled way: explicit formulas for generating functionals and moments are derived, conditions for stationarity and Gaussian approximation are discussed, and relations to other stochastic models are highlighted. The second part deals with statistics of the Smoluchowki processes. We consider two different models of the particle displacement process: the undeviated uniform motion (when a particle moves with random constant velocity along a straight line) and the Brownian motion displacement. In the setting of the undeviated uniform motion we study the problems of estimating the mean speed and the speed distribution, while for the Brownian displacement model the problem of estimating the diffusion coefficient is considered. In all these settings we develop estimators with provable accuracy guarantees.
The main goal of this paper is to study the parameter estimation problem, using the Bayesian methodology, for the drift coefficient of some linear (parabolic) SPDEs driven by a multiplicative noise of special structure. We take the spectral approach by assuming that one path of the first $N$ Fourier modes of the solution is continuously observed over a finite time interval. First, we show that the model is regular and fits into classical local asymptotic normality framework, and thus the MLE and the Bayesian estimators are weakly consistent, asymptotically normal, efficient, and asymptotically equivalent in the class of loss functions with polynomial growth. Secondly, and mainly, we prove a Bernstein-Von Mises type result, that strengthens the existing results in the literature, and that also allows to investigate the Bayesian type estimators with respect to a larger class of priors and loss functions than that covered by classical asymptotic theory. In particular, we prove strong consistency and asymptotic normality of Bayesian estimators in the class of loss functions of at most exponential growth. Finally, we present some numerical examples that illustrate the obtained theoretical results.
In this paper, we built a new nonparametric regression estimator with the local linear method by using the mean squared relative error as a loss function when the data are subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Some simulations are given to show the asymptotic behavior of the estimate in different cases.
We introduce and study a local linear nonparametric regression estimator for censorship model. The main goal of this paper is, to establish the uniform almost sure consistency result with rate over a compact set for the new estimate. To support our theoretical result, a simulation study has been done to make comparison with the classical regression estimator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا