Do you want to publish a course? Click here

A Multiscale Optimization Framework for Reconstructing Binary Images using Multilevel PCA-based Control Space Reduction

75   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An efficient computational approach for optimal reconstructing parameters of binary-type physical properties for models in biomedical applications is developed and validated. The methodology includes gradient-based multiscale optimization with multilevel control space reduction by using principal component analysis (PCA) coupled with dynamical control space upscaling. The reduced dimensional controls are used interchangeably at fine and coarse scales to accumulate the optimization progress and mitigate side effects at both scales. Flexibility is achieved through the proposed procedure for calibrating certain parameters to enhance the performance of the optimization algorithm. Reduced size of control spaces supplied with adjoint-based gradients obtained at both scales facilitate the application of this algorithm to models of higher complexity and also to a broad range of problems in biomedical sciences. This technique is shown to outperform regular gradient-based methods applied to fine scale only in terms of both qualities of binary images and computing time. Performance of the complete computational framework is tested in applications to 2D inverse problems of cancer detection by the electrical impedance tomography (EIT). The results demonstrate the efficient performance of the new method and its high potential for minimizing possibilities for false positive screening and improving the overall quality of the EIT-based procedures.

rate research

Read More

Solving l1 regularized optimization problems is common in the fields of computational biology, signal processing and machine learning. Such l1 regularization is utilized to find sparse minimizers of convex functions. A well-known example is the LASSO problem, where the l1 norm regularizes a quadratic function. A multilevel framework is presented for solving such l1 regularized sparse optimization problems efficiently. We take advantage of the expected sparseness of the solution, and create a hierarchy of problems of similar type, which is traversed in order to accelerate the optimization process. This framework is applied for solving two problems: (1) the sparse inverse covariance estimation problem, and (2) l1-regularized logistic regression. In the first problem, the inverse of an unknown covariance matrix of a multivariate normal distribution is estimated, under the assumption that it is sparse. To this end, an l1 regularized log-determinant optimization problem needs to be solved. This task is challenging especially for large-scale datasets, due to time and memory limitations. In the second problem, the l1-regularization is added to the logistic regression classification objective to reduce overfitting to the data and obtain a sparse model. Numerical experiments demonstrate the efficiency of the multilevel framework in accelerating existing iterative solvers for both of these problems.
85 - Shai Bagon , Meirav Galun 2012
Current state-of-the-art discrete optimization methods struggle behind when it comes to challenging contrast-enhancing discrete energies (i.e., favoring different labels for neighboring variables). This work suggests a multiscale approach for these challenging problems. Deriving an algebraic representation allows us to coarsen any pair-wise energy using any interpolation in a principled algebraic manner. Furthermore, we propose an energy-aware interpolation operator that efficiently exposes the multiscale landscape of the energy yielding an effective coarse-to-fine optimization scheme. Results on challenging contrast-enhancing energies show significant improvement over state-of-the-art methods.
A computational framework based on nonlinear direct-adjoint looping is presented for optimizing mixing strategies for binary fluid systems. The governing equations are the nonlinear Navier-Stokes equations, augmented by an evolution equation for a passive scalar, which are solved by a spectral Fourier-based method. The stirrers are embedded in the computational domain by a Brinkman-penalization technique, and shape and path gradients for the stirrers are computed from the adjoint solution. Four cases of increasing complexity are considered, which demonstrate the efficiency and effectiveness of the computational approach and algorithm. Significant improvements in mixing efficiency, within the externally imposed bounds, are achieved in all cases.
We present a few-parameter ansatz for pulses to implement a broad set of simultaneous single-qubit rotations in frequency-crowded multilevel systems. Specifically, we consider a system of two qutrits whose working and leakage transitions suffer from spectral crowding (detuned by $delta$). In order to achieve precise controllability, we make use of two driving fields (each having two quadratures) at two different tones to implement arbitrary simultaneous rotations. Expanding the waveforms in terms of Hanning windows, we show how analytic pulses containing smooth and composite-pulse features can easily achieve gate errors less than $10^{-4}$ and considerably outperform known adiabatic techniques. Moreover, we find a generalization of the WahWah method by Schutjens et al. [Phys. Rev. A 88, 052330 (2013)] that allows precise separate single-qubit rotations for all gate times beyond a quantum speed limit. We find in all cases a quantum speed limit slightly below $2pi/delta$ for the gate time and show that our pulses are robust against variations in system parameters and filtering due to transfer functions, making them suitable for experimental implementations.
Adjoint-based optimization methods are attractive for aerodynamic shape design primarily due to their computational costs being independent of the dimensionality of the input space and their ability to generate high-fidelity gradients that can then be used in a gradient-based optimizer. This makes them very well suited for high-fidelity simulation based aerodynamic shape optimization of highly parametrized geometries such as aircraft wings. However, the development of adjoint-based solvers involve careful mathematical treatment and their implementation require detailed software development. Furthermore, they can become prohibitively expensive when multiple optimization problems are being solved, each requiring multiple restarts to circumvent local optima. In this work, we propose a machine learning enabled, surrogate-based framework that replaces the expensive adjoint solver, without compromising on predicting predictive accuracy. Specifically, we first train a deep neural network (DNN) from training data generated from evaluating the high-fidelity simulation model on a model-agnostic, design of experiments on the geometry shape parameters. The optimum shape may then be computed by using a gradient-based optimizer coupled with the trained DNN. Subsequently, we also perform a gradient-free Bayesian optimization, where the trained DNN is used as the prior mean. We observe that the latter framework (DNN-BO) improves upon the DNN-only based optimization strategy for the same computational cost. Overall, this framework predicts the true optimum with very high accuracy, while requiring far fewer high-fidelity function calls compared to the adjoint-based method. Furthermore, we show that multiple optimization problems can be solved with the same machine learning model with high accuracy, to amortize the offline costs associated with constructing our models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا