Do you want to publish a course? Click here

Deep Reinforcement Learning for Dynamic Spectrum Sensing and Aggregation in Multi-Channel Wireless Networks

136   0   0.0 ( 0 )
 Added by Cheng-Xiang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, the problem of dynamic spectrum sensing and aggregation is investigated in a wireless network containing N correlated channels, where these channels are occupied or vacant following an unknown joint 2-state Markov model. At each time slot, a single cognitive user with certain bandwidth requirement either stays idle or selects a segment comprising C (C < N) contiguous channels to sense. Then, the vacant channels in the selected segment will be aggregated for satisfying the user requirement. The user receives a binary feedback signal indicating whether the transmission is successful or not (i.e., ACK signal) after each transmission, and makes next decision based on the sensing channel states. Here, we aim to find a policy that can maximize the number of successful transmissions without interrupting the primary users (PUs). The problem can be considered as a partially observable Markov decision process (POMDP) due to without full observation of system environment. We implement a Deep Q-Network (DQN) to address the challenge of unknown system dynamics and computational expenses. The performance of DQN, Q-Learning, and the Improvident Policy with known system dynamics is evaluated through simulations. The simulation results show that DQN can achieve near-optimal performance among different system scenarios only based on partial observations and ACK signals.



rate research

Read More

Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study Group) was established to initiate discussions on new IEEE 802.11 features. Coordinated control methods of the access points (APs) in the wireless local area networks (WLANs) are discussed in EHT Study Group. The present study proposes a deep reinforcement learning-based channel allocation scheme using graph convolutional networks (GCNs). As a deep reinforcement learning method, we use a well-known method double deep Q-network. In densely deployed WLANs, the number of the available topologies of APs is extremely high, and thus we extract the features of the topological structures based on GCNs. We apply GCNs to a contention graph where APs within their carrier sensing ranges are connected to extract the features of carrier sensing relationships. Additionally, to improve the learning speed especially in an early stage of learning, we employ a game theory-based method to collect the training data independently of the neural network model. The simulation results indicate that the proposed method can appropriately control the channels when compared to extant methods.
84 - Weiheng Jiang , Wanxin Yu 2021
Designing clustered unmanned aerial vehicle (UAV) communication networks based on cognitive radio (CR) and reinforcement learning can significantly improve the intelligence level of clustered UAV communication networks and the robustness of the system in a time-varying environment. Among them, designing smarter systems for spectrum sensing and access is a key research issue in CR. Therefore, we focus on the dynamic cooperative spectrum sensing and channel access in clustered cognitive UAV (CUAV) communication networks. Due to the lack of prior statistical information on the primary user (PU) channel occupancy state, we propose to use multi-agent reinforcement learning (MARL) to model CUAV spectrum competition and cooperative decision-making problem in this dynamic scenario, and a return function based on the weighted compound of sensing-transmission cost and utility is introduced to characterize the real-time rewards of multi-agent game. On this basis, a time slot multi-round revisit exhaustive search algorithm based on virtual controller (VC-EXH), a Q-learning algorithm based on independent learner (IL-Q) and a deep Q-learning algorithm based on independent learner (IL-DQN) are respectively proposed. Further, the information exchange overhead, execution complexity and convergence of the three algorithms are briefly analyzed. Through the numerical simulation analysis, all three algorithms can converge quickly, significantly improve system performance and increase the utilization of idle spectrum resources.
We consider distributed caching of content across several small base stations (SBSs) in a wireless network, where the content is encoded using a maximum distance separable code. Specifically, we apply soft time-to-live (STTL) cache management policies, where coded packets may be evicted from the caches at periodic times. We propose a reinforcement learning (RL) approach to find coded STTL policies minimizing the overall network load. We demonstrate that such caching policies achieve almost the same network load as policies obtained through optimization, where the latter assumes perfect knowledge of the distribution of times between file requests as well the distribution of the number of SBSs within communication range of a user placing a request. We also suggest a multi-agent RL (MARL) framework for the scenario of non-uniformly distributed requests in space. For such a scenario, we show that MARL caching policies achieve lower network load as compared to optimized caching policies assuming a uniform request placement. We also provide convincing evidence that synchronous updates offer a lower network load than asynchronous updates for spatially homogeneous renewal request processes due to the memory of the renewal processes.
Next generation wireless networks are expected to be extremely complex due to their massive heterogeneity in terms of the types of network architectures they incorporate, the types and numbers of smart IoT devices they serve, and the types of emerging applications they support. In such large-scale and heterogeneous networks (HetNets), radio resource allocation and management (RRAM) becomes one of the major challenges encountered during system design and deployment. In this context, emerging Deep Reinforcement Learning (DRL) techniques are expected to be one of the main enabling technologies to address the RRAM in future wireless HetNets. In this paper, we conduct a systematic in-depth, and comprehensive survey of the applications of DRL techniques in RRAM for next generation wireless networks. Towards this, we first overview the existing traditional RRAM methods and identify their limitations that motivate the use of DRL techniques in RRAM. Then, we provide a comprehensive review of the most widely used DRL algorithms to address RRAM problems, including the value- and policy-based algorithms. The advantages, limitations, and use-cases for each algorithm are provided. We then conduct a comprehensive and in-depth literature review and classify existing related works based on both the radio resources they are addressing and the type of wireless networks they are investigating. To this end, we carefully identify the types of DRL algorithms utilized in each related work, the elements of these algorithms, and the main findings of each related work. Finally, we highlight important open challenges and provide insights into several future research directions in the context of DRL-based RRAM. This survey is intentionally designed to guide and stimulate more research endeavors towards building efficient and fine-grained DRL-based RRAM schemes for future wireless networks.
Spectrum sharing among users is a fundamental problem in the management of any wireless network. In this paper, we discuss the problem of distributed spectrum collaboration without central management under general unknown channels. Since the cost of communication, coordination and control is rapidly increasing with the number of devices and the expanding bandwidth used there is an obvious need to develop distributed techniques for spectrum collaboration where no explicit signaling is used. In this paper, we combine game-theoretic insights with deep Q-learning to provide a novel asymptotically optimal solution to the spectrum collaboration problem. We propose a deterministic distributed deep reinforcement learning(D3RL) mechanism using a deep Q-network (DQN). It chooses the channels using the Q-values and the channel loads while limiting the options available to the user to a few channels with the highest Q-values and among those, it selects the least loaded channel. Using insights from both game theory and combinatorial optimization we show that this technique is asymptotically optimal for large overloaded networks. The selected channel and the outcome of the successful transmission are fed back into the learning of the deep Q-network to incorporate it into the learning of the Q-values. We also analyzed performance to understand the behavior of D3RL in differ
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا