No Arabic abstract
Recent events leading to the worldwide pandemic of COVID-19 have demonstrated the effective use of genomic sequencing technologies to establish the genetic sequence of this virus. In contrast, the COVID-19 pandemic has demonstrated the absence of computational approaches to understand the molecular basis of this infection rapidly. Here we present an integrated approach to the study of the nsp1 protein in SARS-CoV-1, which plays an essential role in maintaining the expression of viral proteins and further disabling the host protein expression, also known as the host shutoff mechanism. We present three independent methods of evaluating two potential binding sites speculated to participate in host shutoff by nsp1. We have combined results from computed models of nsp1, with deep mining of all existing protein structures (using PDBMine), and binding site recognition (using msTALI) to examine the two sites consisting of residues 55-59 and 73-80. Based on our preliminary results, we conclude that the residues 73-80 appear as the regions that facilitate the critical initial steps in the function of nsp1. Given the 90% sequence identity between nsp1 from SARS-CoV-1 and SARS-CoV-2, we conjecture the same critical initiation step in the function of COVID-19 nsp1.
Currently, there is no effective antiviral drugs nor vaccine for coronavirus disease 2019 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and low similarity with human genes, SARS-CoV-2 main protease (M$^{text{pro}}$) is one of the most favorable drug targets. However, the current understanding of the molecular mechanism of M$^{text{pro}}$ inhibition is limited by the lack of reliable binding affinity ranking and prediction of existing structures of M$^{text{pro}}$-inhibitor complexes. This work integrates mathematics and deep learning (MathDL) to provide a reliable ranking of the binding affinities of 92 SARS-CoV-2 M$^{text{pro}}$ inhibitor structures. We reveal that Gly143 residue in M$^{text{pro}}$ is the most attractive site to form hydrogen bonds, followed by Cys145, Glu166, and His163. We also identify 45 targeted covalent bonding inhibitors. Validation on the PDBbind v2016 core set benchmark shows the MathDL has achieved the top performance with Pearsons correlation coefficient ($R_p$) being 0.858. Most importantly, MathDL is validated on a carefully curated SARS-CoV-2 inhibitor dataset with the averaged $R_p$ as high as 0.751, which endows the reliability of the present binding affinity prediction. The present binding affinity ranking, interaction analysis, and fragment decomposition offer a foundation for future drug discovery efforts.
A number of epidemics, including the SARS-CoV-1 epidemic of 2002-2004, have been known to exhibit superspreading, in which a small fraction of infected individuals is responsible for the majority of new infections. The existence of superspreading implies a fat-tailed distribution of infectiousness (new secondary infections caused per day) among different individuals. Here, we present a simple method to estimate the variation in infectiousness by examining the variation in early-time growth rates of new cases among different subpopulations. We use this method to estimate the mean and variance in the infectiousness, $beta$, for SARS-CoV-2 transmission during the early stages of the pandemic within the United States. We find that $sigma_beta/mu_beta gtrsim 3.2$, where $mu_beta$ is the mean infectiousness and $sigma_beta$ its standard deviation, which implies pervasive superspreading. This result allows us to estimate that in the early stages of the pandemic in the USA, over 81% of new cases were a result of the top 10% of most infectious individuals.
Researchers across the globe are seeking to rapidly repurpose existing drugs or discover new drugs to counter the the novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising approach is to train machine learning (ML) and artificial intelligence (AI) tools to screen large numbers of small molecules. As a contribution to that effort, we are aggregating numerous small molecules from a variety of sources, using high-performance computing (HPC) to computer diverse properties of those molecules, using the computed properties to train ML/AI models, and then using the resulting models for screening. In this first data release, we make available 23 datasets collected from community sources representing over 4.2 B molecules enriched with pre-computed: 1) molecular fingerprints to aid similarity searches, 2) 2D images of molecules to enable exploration and application of image-based deep learning methods, and 3) 2D and 3D molecular descriptors to speed development of machine learning models. This data release encompasses structural information on the 4.2 B molecules and 60 TB of pre-computed data. Future releases will expand the data to include more detailed molecular simulations, computed models, and other products.
Despite the huge effort to contain the infection, the novel SARS-CoV-2 coronavirus has rapidly become pandemics, mainly due to its extremely high human-to-human transmission capability, and a surprisingly high viral charge of symptom-less people. While the seek of a vaccine is still ongoing, promising results have been obtained with antiviral compounds. In particular, lactoferrin is found to have beneficial effects both in preventing and soothing the infection. Here, we explore the possible molecular mechanisms with which lactoferrin interferes with SARS-CoV-2 cell invasion, preventing attachment and/or entry of the virus. To this aim, we search for possible interactions lactoferrin may have with virus structural proteins and host receptors. Representing the molecular iso-electron surface of proteins in terms of 2D-Zernike descriptors, we (i) identified putative regions on the lactoferrin surface able to bind sialic acid receptors on the host cell membrane, sheltering the cell from the virus attachment; (ii) showed that no significant shape complementarity is present between lactoferrin and the ACE2 receptor, while (iii) two high complementarity regions are found on the N- and C-terminal domains of the SARS-CoV-2 spike protein, hinting at a possible competition between lactoferrin and ACE2 for the binding to the spike protein.
The deadly coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gone out of control globally. Despite much effort by scientists, medical experts, and society in general, the slow progress on drug discovery and antibody therapeutic development, the unknown possible side effects of the existing vaccines, and the high transmission rate of the SARS-CoV-2, remind us of the sad reality that our current understanding of the transmission, infectivity, and evolution of SARS-CoV-2 is unfortunately very limited. The major limitation is the lack of mechanistic understanding of viral-host cell interactions, the viral regulation, protein-protein interactions, including antibody-antigen binding, protein-drug binding, host immune response, etc. This limitation will likely haunt the scientific community for a long time and have a devastating consequence in combating COVID-19 and other pathogens. Notably, compared to the long-cycle, highly cost, and safety-demanding molecular-level experiments, the theoretical and computational studies are economical, speedy, and easy to perform. There exists a tsunami of the literature on molecular modeling, simulation, and prediction of SARS-CoV-2 that has become impossible to fully be covered in a review. To provide the reader a quick update about the status of molecular modeling, simulation, and prediction of SARS-CoV-2, we present a comprehensive and systematic methodology-centered narrative in the nick of time. Aspects such as molecular modeling, Monte Carlo (MC) methods, structural bioinformatics, machine learning, deep learning, and mathematical approaches are included in this review. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are assessing the current status in the field.