Do you want to publish a course? Click here

The gravitational wave background signal from tidal disruption events

440   0   0.0 ( 0 )
 Added by Martina Toscani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we derive the gravitational wave stochastic background from tidal disruption events (TDEs). We focus on both the signal emitted by main sequence stars disrupted by super-massive black holes (SMBHs) in galaxy nuclei, and on that from disruptions of white dwarfs by intermediate mass black holes (IMBHs) located in globular clusters. We show that the characteristic strain $h_{rm c}$s dependence on frequency is shaped by the pericenter distribution of events within the tidal radius, and under standard assumptions $h_{rm c} propto f^{-1/2}$. This is because the TDE signal is a burst of gravitational waves at the orbital frequency of the closest approach. In addition, we compare the background characteristic strains with the sensitivity curves of the upcoming generation of space-based gravitational wave interferometers: the Laser Interferometer Space Antenna (LISA), TianQin, ALIA, the DECI-hertz inteferometer Gravitational wave Observatory (DECIGO) and the Big Bang Observer (BBO). We find that the background produced by main sequence stars might be just detected by BBO in its lowest frequency coverage, but it is too weak for all the other instruments. On the other hand, the background signal from TDEs with white dwarfs will be within reach of ALIA, and especially of DECIGO and BBO, while it is below the LISA and TianQin sensitive curves. This background signal detection will not only provide evidence for the existence of IMBHs up to redshift $zsim 3$, but it will also inform us on the number of globular clusters per galaxy and on the occupation fraction of IMBHs in these environments.



rate research

Read More

Gravitational waves can be emitted by accretion discs if they undergo instabilities that generate a time varying mass quadrupole. In this work we investigate the gravitational signal generated by a thick accretion disc of $1 M_{odot}$ around a static super-massive black hole of $10^{6}M_{odot}$, assumed to be formed after the tidal disruption of a solar type star. This torus has been shown to be unstable to a global non-axisymmetric hydrodynamic instability, the Papaloizou-Pringle instability, in the case where it is not already accreting and has a weak magnetic field. We start by deriving analytical estimates of the maximum amplitude of the gravitational wave signal, with the aim to establish its detectability by the Laser Interferometer Space Antenna (LISA). Then, we compare these estimates with those obtained through a numerical simulation of the torus, made with a 3D smoothed particle hydrodynamics code. Our numerical analysis shows that the measured strain is two orders of magnitude lower than the maximum value obtained analytically. However, accretion discs affected by the Papaloizou-Pringle instability may still be interesting sources for LISA, if we consider discs generated after deeply penetrating tidal disruptions of main sequence stars of higher mass.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probing otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, there are several dozen TDE candidates, which share some properties and differ in others. The range in properties is broad enough to overlap other transient types, such as active galactic nuclei (AGN) and supernovae (SNe), which can make TDE classification ambiguous. A further complication is that TDE signatures have not been uniformly observed to similar sensitivities or even targeted across all candidates. This chapter reviews those events that are unusual relative to other TDEs, including the possibility of TDEs in pre-existing AGN, and summarises those characteristics thought to best distinguish TDEs from continuously accreting AGN, strongly flaring AGN, SNe, and Gamma-Ray Bursts (GRBs), as well as other potential impostors like stellar collisions, micro-TDEs, and circumbinary accretion flows. We conclude that multiple observables should be used to classify any one event as a TDE. We also consider the TDE candidate population as a whole, which, for certain host galaxy or SMBH characteristics, is distinguishable statistically from non-TDEs, suggesting that at least some TDE candidates do in fact arise from SMBH-disrupted stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا