Do you want to publish a course? Click here

Empowering the Edge Intelligence by Air-Ground Integrated Federated Learning in 6G Networks

132   0   0.0 ( 0 )
 Added by Yuben Qu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ubiquitous intelligence has been widely recognized as a critical vision of the future sixth generation (6G) networks, which implies the intelligence over the whole network from the core to the edge including end devices. Nevertheless, fulfilling such vision, particularly the intelligence at the edge, is extremely challenging, due to the limited resources of edge devices as well as the ubiquitous coverage envisioned by 6G. To empower the edge intelligence, in this article, we propose a novel framework called AGIFL (Air-Ground Integrated Federated Learning), which organically integrates air-ground integrated networks and federated learning (FL). In the AGIFL, leveraging the flexible on-demand 3D deployment of aerial nodes such as unmanned aerial vehicles (UAVs), all the nodes can collaboratively train an effective learning model by FL. We also conduct a case study to evaluate the effect of two different deployment schemes of the UAV over the learning and network performance. Last but not the least, we highlight several technical challenges and future research directions in the AGIFL.



rate research

Read More

183 - Chao Dong , Yun Shen , Yuben Qu 2020
The air-ground integrated network is a key component of future sixth generation (6G) networks to support seamless and near-instant super-connectivity. There is a pressing need to intelligently provision various services in 6G networks, which however is challenging. To meet this need, in this article, we propose a novel architecture called UaaS (UAVs as a Service) for the air-ground integrated network, featuring UAV as a key enabler to boost edge intelligence with the help of machine learning (ML) techniques. We envision that the proposed UaaS architecture could intelligently provision wireless communication service, edge computing service, and edge caching service by a network of UAVs, making full use of UAVs flexible deployment and diverse ML techniques. We also conduct a case study where UAVs participate in the model training of distributed ML among multiple terrestrial users, whose result shows that the model training is efficient with a negligible energy consumption of UAVs, compared to the flight energy consumption. Finally, we discuss the challenges and open research issues in the UaaS.
6G will exploit satellite, aerial and terrestrial platforms jointly to improve radio access capability and to unlock the support of on-demand edge cloud services in the three dimensional space (3D) by incorporating Mobile Edge Computing (MEC) functionalities on aerial platforms and low orbit satellites. This will extend the MEC support to devices and network elements in the sky and will forge a space borne MEC enabling intelligent personalized and distributed on demand services. 3D end users will experience the impression of being surrounded by a distributed computer fulfilling their requests in apparently zero latency. In this paper, we consider an architecture providing communication, computation, and caching (C3) services on demand, anytime and everywhere in 3D space, building on the integration of conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and the management of the aerial devices need to be jointly orchestrated via AI-based algorithms, exploiting virtualized networks functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.
108 - Xuelin Cao , Bo Yang , Chau Yuen 2021
Terrestrial communication networks have experienced significant development in recent years by providing emerging services for ground users. However, one critical challenge raised is to provide full coverage (especially in dense high-rise urban environments) for ground users due to scarce network resources and limited coverage. To meet this challenge, we propose a high altitude platform (HAP)-reserved ground-air-space (GAS) transmission scheme, which combines with the ground-to-space (G2S) transmission scheme to strengthen the terrestrial communication and save the transmission power. To integrate the two transmission schemes, we propose a transmission control strategy. Wherein, the ground user decides its transmission scheme, i.e., switches between the GAS link transmission and the G2S link transmission with a probability. We then maximize the overall throughput and derive the optimal probability that a ground user adopts the GAS transmission scheme. Numerical results demonstrate the superiority of the proposed transmission control strategy.
204 - Shuai Yu , Xiaowen Gong , Qian Shi 2021
Edge computing-enhanced Internet of Vehicles (EC-IoV) enables ubiquitous data processing and content sharing among vehicles and terrestrial edge computing (TEC) infrastructures (e.g., 5G base stations and roadside units) with little or no human intervention, plays a key role in the intelligent transportation systems. However, EC-IoV is heavily dependent on the connections and interactions between vehicles and TEC infrastructures, thus will break down in some remote areas where TEC infrastructures are unavailable (e.g., desert, isolated islands and disaster-stricken areas). Driven by the ubiquitous connections and global-area coverage, space-air-ground integrated networks (SAGINs) efficiently support seamless coverage and efficient resource management, represent the next frontier for edge computing. In light of this, we first review the state-of-the-art edge computing research for SAGINs in this article. After discussing several existing orbital and aerial edge computing architectures, we propose a framework of edge computing-enabled space-air-ground integrated networks (EC-SAGINs) to support various IoV services for the vehicles in remote areas. The main objective of the framework is to minimize the task completion time and satellite resource usage. To this end, a pre-classification scheme is presented to reduce the size of action space, and a deep imitation learning (DIL) driven offloading and caching algorithm is proposed to achieve real-time decision making. Simulation results show the effectiveness of our proposed scheme. At last, we also discuss some technology challenges and future directions.
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا