Do you want to publish a course? Click here

Controlling the helicity of magnetic skyrmions by electrical field in frustrated magnets

70   0   0.0 ( 0 )
 Added by Shuai Dong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The skyrmions generated by frustration in centrosymmetric structures host extra internal degrees of freedom: vorticity and helicity, resulting in distinctive properties and potential functionality, which are not shared by the skyrmions stemming from the Dzyaloshinskii-Moriya interaction in noncentrosymmetric structures. The present work indicates that the magnetism-driven electric polarization carried by skyrmions provides a direct handle for tuning helicity. Especially for the in-plane magnetized skyrmions, the helicity can be continuously rotated and exactly picked by applying an external electric field for both skyrmions and antiskyrmions. The in-plane uniaxial anisotropy is beneficial to this manipulation.



rate research

Read More

338 - J. J. Liang , J. H. Yu , J. Chen 2017
The study of skyrmion/antiskyrmion motion in magnetic materials is very important in particular for the spintronics applications. In this work, we study the dynamics of isolated skyrmions and antiskyrmions in frustrated magnets driven by magnetic field gradient, using the Landau-Lifshitz-Gilbert simulations on the frustrated classical Heisenberg model on the triangular lattice. A Hall-like motion induced by the gradient is revealed in bulk system, similar to that in the well-studied chiral magnets. More interestingly, our work suggests that the lateral confinement in nano-stripes of the frustrated system can completely suppress the Hall motion and significantly speed up the motion along the gradient direction. The simulated results are well explained by the Thiele theory. It is demonstrated that the acceleration of the motion is mainly determined by the Gilbert damping constant, which provides useful information for finding potential materials for skyrmion-based spintronics.
The magnetic properties of dilute Li$_2$(Li$_{1-x}$Fe$_x$)N with $x sim 0.001$ are dominated by the spin of single, isolated Fe atoms. Below $T = 10$ K the spin-relaxation times become temperature-independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in $textit{transverse}$ magnetic fields that proves the resonant character of this tunneling process. $textit{Longitudinal}$ fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by four orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li$_2$(Li$_{1-x}$Fe$_x$)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Electrical manipulation of emergent phenomena due to nontrivial band topology is a key to realize next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles. It exhibits various exotic phenomena such as large anomalous Hall effect (AHE) and chiral anomaly, which have robust properties due to the topologically protected Weyl nodes. To manipulate such phenomena, the magnetic version of Weyl semimetals would be useful as a magnetic texture may provide a handle for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, given the prospects of antiferromagnetic (AF) spintronics for realizing high-density devices with ultrafast operation, it would be ideal if one could electrically manipulate an AF Weyl metal. However, no report has appeared on the electrical manipulation of a Weyl metal. Here we demonstrate the electrical switching of a topological AF state and its detection by AHE at room temperature. In particular, we employ a polycrystalline thin film of the AF Weyl metal Mn$_3$Sn, which exhibits zero-field AHE. Using the bilayer device of Mn$_3$Sn and nonmagnetic metals (NMs), we find that an electrical current density of $sim 10^{10}$-$10^{11}$ A/m$^2$ in NMs induces the magnetic switching with a large change in Hall voltage, and besides, the current polarity along a bias field and the sign of the spin Hall angle $theta_{rm SH}$ of NMs [Pt ($theta_{rm SH} > 0$), Cu($theta_{rm SH} sim 0$), W ($theta_{rm SH} < 0$)] determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is made using the same protocol as the one used for ferromagnetic metals. Our observation may well lead to another leap in science and technology for topological magnetism and AF spintronics.
The spin dynamics of Tb(OETAP)$_2$ single ion magnets was investigated by means of muon spin resonance ($mu$SR) both in the bulk material as well as when the system is embedded into PEDOT:PSS polymer conductor. The characteristic spin fluctuation time is characterized by a high temperature activated trend, with an energy barrier around 320 K, and by a low temperature tunneling regime. When the single ion magnet is embedded into the polymer the energy barrier only slightly decreases and the fluctuation time remains of the same order of magnitude even at low temperature. This finding shows that these single molecule magnets preserve their characteristics which, if combined with those of the conducting polymer, result in a hybrid material of potential interest for organic spintronics.
115 - Jun Chen , Shuai Dong 2021
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferromagnetic multiferroics using electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a rolling-downhill-like motion of domain wall is achieved at the nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to pursuit practical and fast converse magnetoelectric functions via spin dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا