Do you want to publish a course? Click here

COVID-19 Knowledge Graph: Accelerating Information Retrieval and Discovery for Scientific Literature

75   0   0.0 ( 0 )
 Added by Colby Wise
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The coronavirus disease (COVID-19) has claimed the lives of over 350,000 people and infected more than 6 million people worldwide. Several search engines have surfaced to provide researchers with additional tools to find and retrieve information from the rapidly growing corpora on COVID-19. These engines lack extraction and visualization tools necessary to retrieve and interpret complex relations inherent to scientific literature. Moreover, because these engines mainly rely upon semantic information, their ability to capture complex global relationships across documents is limited, which reduces the quality of similarity-based article recommendations for users. In this work, we present the COVID-19 Knowledge Graph (CKG), a heterogeneous graph for extracting and visualizing complex relationships between COVID-19 scientific articles. The CKG combines semantic information with document topological information for the application of similar document retrieval. The CKG is constructed using the latent schema of the data, and then enriched with biomedical entity information extracted from the unstructured text of articles using scalable AWS technologies to form relations in the graph. Finally, we propose a document similarity engine that leverages low-dimensional graph embeddings from the CKG with semantic embeddings for similar article retrieval. Analysis demonstrates the quality of relationships in the CKG and shows that it can be used to uncover meaningful information in COVID-19 scientific articles. The CKG helps power www.cord19.aws and is publicly available.



rate research

Read More

To combat COVID-19, both clinicians and scientists need to digest vast amounts of relevant biomedical knowledge in scientific literature to understand the disease mechanism and related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities and their visual chemical structures, relations, and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
Information extraction and data mining in biochemical literature is a daunting task that demands resource-intensive computation and appropriate means to scale knowledge ingestion. Being able to leverage this immense source of technical information helps to drastically reduce costs and time to solution in multiple application fields from food safety to pharmaceutics. We present a scalable document ingestion system that integrates data from databases and publications (in PDF format) in a biochemistry knowledge graph (BCKG). The BCKG is a comprehensive source of knowledge that can be queried to retrieve known biochemical facts and to generate novel insights. After describing the knowledge ingestion framework, we showcase an application of our system in the field of carbohydrate enzymes. The BCKG represents a way to scale knowledge ingestion and automatically exploit prior knowledge to accelerate discovery in biochemical sciences.
181 - Bhaskar Mitra 2020
Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents--or short passages--in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms--such as a persons name or a product model number--not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks.
149 - Yi Luan 2018
As a research community grows, more and more papers are published each year. As a result there is increasing demand for improved methods for finding relevant papers, automatically understanding the key ideas and recommending potential methods for a target problem. Despite advances in search engines, it is still hard to identify new technologies according to a researchers need. Due to the large variety of domains and extremely limited annotated resources, there has been relatively little work on leveraging natural language processing in scientific recommendation. In this proposal, we aim at making scientific recommendations by extracting scientific terms from a large collection of scientific papers and organizing the terms into a knowledge graph. In preliminary work, we trained a scientific term extractor using a small amount of annotated data and obtained state-of-the-art performance by leveraging large amount of unannotated papers through applying multiple semi-supervised approaches. We propose to construct a knowledge graph in a way that can make minimal use of hand annotated data, using only the extracted terms, unsupervised relational signals such as co-occurrence, and structural external resources such as Wikipedia. Latent relations between scientific terms can be learned from the graph. Recommendations will be made through graph inference for both observed and unobserved relational pairs.
Coronavirus disease (COVID-19) has been declared as a pandemic by WHO with thousands of cases being reported each day. Numerous scientific articles are being published on the disease raising the need for a service which can organize, and query them in a reliable fashion. To support this cause we present AWS CORD-19 Search (ACS), a public, COVID-19 specific, neural search engine that is powered by several machine learning systems to support natural language based searches. ACS with capabilities such as document ranking, passage ranking, question answering and topic classification provides a scalable solution to COVID-19 researchers and policy makers in their search and discovery for answers to high priority scientific questions. We present a quantitative evaluation and qualitative analysis of the system against other leading COVID-19 search platforms. ACS is top performing across these systems yielding quality results which we detail with relevant examples in this work.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا