Do you want to publish a course? Click here

AWS CORD-19 Search: A Neural Search Engine for COVID-19 Literature

161   0   0.0 ( 0 )
 Added by Kristjan Arumae
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Coronavirus disease (COVID-19) has been declared as a pandemic by WHO with thousands of cases being reported each day. Numerous scientific articles are being published on the disease raising the need for a service which can organize, and query them in a reliable fashion. To support this cause we present AWS CORD-19 Search (ACS), a public, COVID-19 specific, neural search engine that is powered by several machine learning systems to support natural language based searches. ACS with capabilities such as document ranking, passage ranking, question answering and topic classification provides a scalable solution to COVID-19 researchers and policy makers in their search and discovery for answers to high priority scientific questions. We present a quantitative evaluation and qualitative analysis of the system against other leading COVID-19 search platforms. ACS is top performing across these systems yielding quality results which we detail with relevant examples in this work.



rate research

Read More

This report describes the participation of two Danish universities, University of Copenhagen and Aalborg University, in the international search engine competition on COVID-19 (the 2020 TREC-COVID Challenge) organised by the U.S. National Institute of Standards and Technology (NIST) and its Text Retrieval Conference (TREC) division. The aim of the competition was to find the best search engine strategy for retrieving precise biomedical scientific information on COVID-19 from the largest, at that point in time, dataset of curated scientific literature on COVID-19 -- the COVID-19 Open Research Dataset (CORD-19). CORD-19 was the result of a call to action to the tech community by the U.S. White House in March 2020, and was shortly thereafter posted on Kaggle as an AI competition by the Allen Institute for AI, the Chan Zuckerberg Initiative, Georgetown Universitys Center for Security and Emerging Technology, Microsoft, and the National Library of Medicine at the US National Institutes of Health. CORD-19 contained over 200,000 scholarly articles (of which more than 100,000 were with full text) about COVID-19, SARS-CoV-2, and related coronaviruses, gathered from curated biomedical sources. The TREC-COVID challenge asked for the best way to (a) retrieve accurate and precise scientific information, in response to some queries formulated by biomedical experts, and (b) rank this information decreasingly by its relevance to the query. In this document, we describe the TREC-COVID competition setup, our participation to it, and our resulting reflections and lessons learned about the state-of-art technology when faced with the acute task of retrieving precise scientific information from a rapidly growing corpus of literature, in response to highly specialised queries, in the middle of a pandemic.
With worldwide concerns surrounding the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there is a rapidly growing body of scientific literature on the virus. Clinicians, researchers, and policy-makers need to be able to search these articles effectively. In this work, we present a zero-shot ranking algorithm that adapts to COVID-related scientific literature. Our approach filters training data from another collection down to medical-related queries, uses a neural re-ranking model pre-trained on scientific text (SciBERT), and filters the target document collection. This approach ranks top among zero-shot methods on the TREC COVID Round 1 leaderboard, and exhibits a P@5 of 0.80 and an nDCG@10 of 0.68 when evaluated on both Round 1 and 2 judgments. Despite not relying on TREC-COVID data, our method outperforms models that do. As one of the first search methods to thoroughly evaluate COVID-19 search, we hope that this serves as a strong baseline and helps in the global crisis.
A dataset of COVID-19-related scientific literature is compiled, combining the articles from several online libraries and selecting those with open access and full text available. Then, hierarchical nonnegative matrix factorization is used to organize literature related to the novel coronavirus into a tree structure that allows researchers to search for relevant literature based on detected topics. We discover eight major latent topics and 52 granular subtopics in the body of literature, related to vaccines, genetic structure and modeling of the disease and patient studies, as well as related diseases and virology. In order that our tool may help current researchers, an interactive website is created that organizes available literature using this hierarchical structure.
We created this EVIDENCEMINER system for automatic textual evidence mining in COVID-19 literature. EVIDENCEMINER is a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. It is constructed in a completely automated way without any human effort for training data annotation. EVIDENCEMINER is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The named entities and meta-patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization.
The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا