Do you want to publish a course? Click here

Constraints from observational data for a running cosmological constant and warm dark matter with curvature

101   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known than the inclusion of spatial curvature can modify the evolution of matter perturbations and affect the Large Scale Structure (LSS) formation. We quantify the effects of the non-zero space curvature in terms of LSS formation for a cosmological model with a running vacuum energy density and a warm dark matter component. The evolution of density perturbations and the modified shape of its power spectrum are constructed and analyzed.



rate research

Read More

Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter sector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
77 - Qing Gao , Yungui Gong , Qin Fei 2018
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function approximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy. The latter is a holographic dark energy model based on the recently proposed Barrow entropy, which arises from the modification of the black-hole surface due to quantum-gravitational effects. We first consider the case where the new deformation exponent $Delta$ is the sole model parameter, and we show that although the standard value $Delta=0$, which corresponds to zero deformation, lies within the 1$sigma$ region, a deviation is favored. In the case where we let both $Delta$ and the second model parameter to be free we find that a deviation from standard holographic dark energy is preferred. Additionally, applying the Akaike, Bayesian and Deviance Information Criteria, we conclude that the one-parameter model is statistically compatible with $Lambda$CDM paradigm, and preferred comparing to the two-parameter one. Finally, concerning the present value of the Hubble parameter we find that it is close to the Planck value.
A dynamical resolution to the cosmological constant fine-tuning problem has been previously put forward, based on a scalar-tensor gravitational theory possessing de Sitter attractor solutions characterized by a small Hubble expansion rate, irrespective of an initially large vacuum energy. We show that a technically natural subregion of the parameter space yields a cosmological evolution through radiation- and matter-dominated eras that is essentially indistinguishable from that predicted by General Relativity. Similarly, the proposed model automatically satisfies the observational constraints on a fifth force mediated by the new scalar degree of freedom.
This article discusses a dark energy cosmological model in the standard theory of gravity - general relativity with a broad scalar field as a source. Exact solutions of Einsteins field equations are derived by considering a particular form of deceleration parameter $q$, which shows a smooth transition from decelerated to accelerated phase in the evolution of the universe. The external datasets such as Hubble ($H(z)$) datasets, Supernovae (SN) datasets, and Baryonic Acoustic Oscillation (BAO) datasets are used for constraining the model par parameters appearing in the functional form of $q$. The transition redshift is obtained at $% z_{t}=0.67_{-0.36}^{+0.26}$ for the combined data set ($H(z)+SN+BAO$), where the model shows signature-flipping and is consistent with recent observations. Moreover, the present value of the deceleration parameter comes out to be $q_{0}=-0.50_{-0.11}^{+0.12}$ and the jerk parameter $% j_{0}=-0.98_{-0.02}^{+0.06}$ (close to 1) for the combined datasets, which is compatible as per Planck2018 results. The analysis also constrains the omega value i.e., $Omega _{m_{0}}leq 0.269$ for the smooth evolution of the scalar field EoS parameter. It is seen that energy density is higher for the effective energy density of the matter field than energy density in the presence of a scalar field. The evolution of the physical and geometrical parameters is discussed in some details with the model parameters numerical constrained values. Moreover, we have performed the state-finder analysis to investigate the nature of dark energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا