No Arabic abstract
Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The situation changed with the development of configuration path integral Monte Carlo (CPIMC) by Schoof textit{et al.} [T. Schoof textit{et al.}, Contrib. Plasma Phys. textbf{51}, 687 (2011)] that allowed for the first textit{ab initio} simulations for dense quantum plasmas. CPIMC also has a sign problem that occurs when the density is lowered, i.e. in a parameter range that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the warm dense electron gas are limited to small values of the Brueckner parameter -- the ratio of the interparticle distance to the Bohr radius -- $r_s=bar{r}/a_B lesssim 1$. In order to reach the regime of stronger coupling (lower density) with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we introduce two differe
Path integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic Born--Oppenheimer and non-adiabatic simulations, and inspecting projections of the full three-body dynamics onto adiabatic Born--Oppenheimer approximation. Coupling of electron and nuclear quantum dynamics is clearly seen. Nuclear pair correlation function is found to broaden by 0.040 a_0 and average bond length is larger by 0.056 a_0. Also, non-adiabatic correction to the binding energy is found. Electronic distribution is affected less, and therefore, we could say that the adiabatic approximation is better for the electron than for the nuclei.
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has been proposed. In this work, we develop a Fractional Path Integral Monte Carlo algorithm that can be used to study the finite temperature behavior of the time-independent Fractional Schrodinger Equation for a variety of potentials. In so doing, we derive an analytic form for the finite temperature fractional free particle density matrix and demonstrate how it can be sampled to acquire new sets of particle positions. We employ this algorithm to simulate both the free particle and $^{4}$He (Aziz) Hamiltonians. We find that the fractional Laplacian strongly encourages particle delocalization, even in the presence of interactions, suggesting that fractional Hamiltonians may manifest atypical forms of condensation. Our work opens the door to studying fractional Hamiltonians with arbitrarily complex potentials that escape analytical solutions.
We present a practical analysis of the fermion sign problem in fermionic path integral Monte Carlo (PIMC) simulations in the grand-canonical ensemble (GCE). As a representative model system, we consider electrons in a $2D$ harmonic trap. We find that the sign problem in the GCE is even more severe than in the canonical ensemble at the same conditions, which, in general, makes the latter the preferred option. Despite these difficulties, we show that fermionic PIMC simulations in the GCE are still feasible in many cases, which potentially gives access to important quantities like the compressiblity or the Matsubara Greens function. This has important implications for contemporary fields of research such as warm dense matter, ultracold atoms, and electrons in quantum dots.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is available, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
We present extensive new emph{ab initio} path integral Monte Carlo (PIMC) simulations of normal liquid $^3$He without any nodal constraints. This allows us to study the effects of temperature on different structural properties like the static structure factor $S(mathbf{q})$, the momentum distribution $n(mathbf{q})$, and the static density response function $chi(mathbf{q})$, and to unambiguously quantify the impact of Fermi statistics. In addition, the dynamic structure factor $S(mathbf{q},omega)$ is rigorously reconstructed from imaginary-time PIMC data, and we find the familiar phonon-maxon-roton dispersion that is well known from $^4$He and has been reported previously for two-dimensional $^3$He films [Nature textbf{483}, 576-579 (2012)]. The comparison of our new results for both $S(mathbf{q})$ and $S(mathbf{q},omega)$ to neutron scattering measurements reveals an excellent agreement between theory and experiment.