Do you want to publish a course? Click here

Hydrogen molecule ion: Path integral Monte Carlo approach

228   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Path integral Monte Carlo approach is used to study the coupled quantum dynamics of the electron and nuclei in hydrogen molecule ion. The coupling effects are demonstrated by comparing differences in adiabatic Born--Oppenheimer and non-adiabatic simulations, and inspecting projections of the full three-body dynamics onto adiabatic Born--Oppenheimer approximation. Coupling of electron and nuclear quantum dynamics is clearly seen. Nuclear pair correlation function is found to broaden by 0.040 a_0 and average bond length is larger by 0.056 a_0. Also, non-adiabatic correction to the binding energy is found. Electronic distribution is affected less, and therefore, we could say that the adiabatic approximation is better for the electron than for the nuclei.



rate research

Read More

Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The situation changed with the development of configuration path integral Monte Carlo (CPIMC) by Schoof textit{et al.} [T. Schoof textit{et al.}, Contrib. Plasma Phys. textbf{51}, 687 (2011)] that allowed for the first textit{ab initio} simulations for dense quantum plasmas. CPIMC also has a sign problem that occurs when the density is lowered, i.e. in a parameter range that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the warm dense electron gas are limited to small values of the Brueckner parameter -- the ratio of the interparticle distance to the Bohr radius -- $r_s=bar{r}/a_B lesssim 1$. In order to reach the regime of stronger coupling (lower density) with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we introduce two differe
We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo (QMC) solution of the electronic part with the path integral (PI) formalism for the quantum nuclear dynamics. On the one hand, the PI molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational QMC can provide Born-Oppenheimer (BO) potential energy surfaces with a precision comparable to the most advanced post Hartree-Fock approaches, and with a favorable scaling with the system size. To deal with the intrinsic QMC noise, we generalize the PI molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of QMC nuclear forces. The variational parameters of the QMC wave function are evolved during the nuclear dynamics, such that the BO potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated even in presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be very efficient also in the case of deterministic ionic forces. The new implementation is validated on the Zundel ion by direct comparison with standard PI Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well beyond room temperature giving the excess proton an increased mobility by quantum tunneling.
We present a variational MonteCarlo (VMC) and lattice regularized diffusion MonteCarlo (LRDMC) study of the binding energy and dispersion curve of the water dimer. As a variation ansatz we use the JAGP wave function, an implementation of the resonating valence bond (RVB) idea. Actually one the aim of the present work is to investigate how the bonding of two water molecules, as a prototype of the hydrogen-bonded complexes, could be described within an JAGP approach. Using a pseudopotential for the inert core of the Oxygen, with a full optimization of the variational parameters, we obtain at the VMC level a binding energy of -4.5(0.1) Kcal/mol, while LRDMC calculations gives -4.9(0.1) Kcal/mol (experiment 5 Kcal/Mol). The calculated dispersion curve reproduces both at the VMC and LRDMC level the miminum position and the curvature.The quality of the WF gives us the possibility to dissect the binding energy in different contributions by appropriately switching off determinantal and Jastrow terms in the JAGP: we estimate the dynamical contribution to the binding energy to be of the order of 1.4(0.2) Kcal/Mol whereas the covalent contribution about 1.0(0.2) Kcal/Mol. JAGP reveales thus a promising WF for describing systems where both dispersive and covalent forces play an important role.
84 - Mamikon Gulian , Haobo Yang , 2017
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has been proposed. In this work, we develop a Fractional Path Integral Monte Carlo algorithm that can be used to study the finite temperature behavior of the time-independent Fractional Schrodinger Equation for a variety of potentials. In so doing, we derive an analytic form for the finite temperature fractional free particle density matrix and demonstrate how it can be sampled to acquire new sets of particle positions. We employ this algorithm to simulate both the free particle and $^{4}$He (Aziz) Hamiltonians. We find that the fractional Laplacian strongly encourages particle delocalization, even in the presence of interactions, suggesting that fractional Hamiltonians may manifest atypical forms of condensation. Our work opens the door to studying fractional Hamiltonians with arbitrarily complex potentials that escape analytical solutions.
We calculate the linear and non-linear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field - an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hyper-susceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry - usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hyper-susceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wavefunction affect the accuracy of the calculated susceptibilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا