Do you want to publish a course? Click here

Constraints on Dynamical Dark Energy Models from the Abundance of Massive Galaxies at High Redshifts

83   0   0.0 ( 0 )
 Added by Nicola Menci
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the maximal abundance of massive systems predicted in different dynamical dark energy (DDE) models at high redshifts z = 4-7 with the measured abundance of the most massive galaxies observed to be already in place at such redshifts. The aim is to derive constraints for the evolution of the dark energy equation of state parameter w which are complementary to existing probes. We adopt the standard parametrization for the DDE evolution in terms of the local value w_0 and of the look-back time derivative w_a of the equation of state. We derive constraints on combinations (w_0, w_a) in the different DDE models by using three different, independent probes: (i) the observed stellar mass function of massive objects at z = 6 derived from the CANDELS survey; (ii) the estimated volume density of massive halos derived from the observation of massive, star-forming galaxies detected in the submillimeter range at z = 4; (iii) The rareness of he most massive system (estimated gas mass exceeding 3 10^11 M_sun) observed to be in place at z = 7, a far-infrared-luminous object recently detected in the South Pole Telescope (SPT) survey. Finally, we show that the combination of our results from the three above probes excludes a sizable fraction of the DDE parameter space w_a > -3/4 - (w_0 + 3/2) presently allowed (or even favored) by existing probes.



rate research

Read More

We use state-of-art measurements of the galaxy luminosity function (LF) at z=6, 7 and 8 to derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light axion dark matter (ULADM) models alternative to the cold dark matter (CDM) paradigm. To this purpose we have run a suite of high-resolution N-body simulations to accurately characterise the low mass-end of the halo mass function and derive DM model predictions of the high-z luminosity function. In order to convert halo masses into UV-magnitudes we introduce an empirical approach based on halo abundance matching which allows us to model the LF in terms of the amplitude and scatter of the ensemble average star formation rate halo mass relation of each DM model, $langle {rm SFR}({rm M_{ h}},z)rangle$. We find that independent of the DM scenario the average SFR at fixed halo mass increases from z=6 to 8, while the scatter remains constant. At halo mass ${rm M_{h}}gtrsim 10^{12},{rm M}_odot$ h$^{-1}$ the average SFR as function of halo mass follows a double power law trend that is common to all models, while differences occur at smaller masses. In particular, we find that models with a suppressed low-mass halo abundance exhibit higher SFR compared to the CDM results. Using deviance statistics we obtain a lower limit on the WDM thermal relic particle mass, $m_{rm WDM}gtrsim 1.5$ keV at $2sigma$. In the case of LFDM models, the phase transition redshift parameter is bounded to $z_tgtrsim 8cdot 10^5$ at $2sigma$. We find ULADM best-fit models with axion mass $m_agtrsim 1.6cdot 10^{-22}$ eV to be well within $2sigma$ of the deviance statistics. We remark that measurements at $z=6$ slightly favour a flattening of the LF at faint UV-magnitudes. This tends to prefer some of the non-CDM models in our simulation suite, although not at a statistically significant level to distinguish them from CDM.
74 - N. Menci 2016
We show that the recently measured UV luminosity functions of ultra-faint lensed galaxies at z= 6 in the Hubble Frontier Fields provide an unprecedented probe for the mass m_X of the Warm Dark Matter candidates independent of baryonic physics. Comparing the measured abundance of the faintest galaxies with the maximum number density of dark matter halos in WDM cosmologies sets a robust limit m_X> 2.9 keV for the mass of thermal relic WDM particles at a 1-sigma confidence level, m_X> 2.4 keV at 2-sigma, and m_X> 2.1 keV at 3-sigma. These constitute the tightest constraints on WDM particle mass derived to date independently of the baryonic physics involved in galaxy formation. We discuss the impact of our results on the production mechanism of sterile neutrinos. In particular, if sterile neutrinos are responsible for the 3.5 keV line reported in observations of X-ray clusters, our results firmly rule out the Dodelson-Widrow production mechanism, and yield m_{sterile}> 6.1 keV for sterile neutrinos produced via the Shi-Fuller mechanism.
We compute the number density of massive Black Holes (BHs) at the centre of galaxies at z=6 in different Dynamical Dark Energy (DDE) cosmologies, and compare it with existing observational lower limits, to derive constraints on the evolution of the Dark Energy equation of state parameter w. Our approach only assumes the canonical scenario for structure formation from the collapse of overdense regions of the Dark Matter dominated primordial density field on progressively larger scales; the Black Hole accretion and merging rate have been maximized in the computation so as to obtain robust constraints on w and on its look-back time derivative w_a. Our results provide independent constraints complementary to those obtained by combining Supernovae, Cosmic Microwave Background and Baryonic Acoustic Oscillations; while the latter concern combinations of w_0 and w_a leaving the time evolution of the state parameter w_a highly unconstrained, the BH abundance mainly provide upper limits on w_a, only weakly depending on w_0. Combined with the existing constraints, our results significantly restrict the allowed region in DDE parameter space, ruling out DDE models not providing cosmic time and fast growth factor large enough to allow for the building up of the observed abundance of BHs; in particular, models with -1.2 leq w_0 leq -1 and positive redshift evolution w_a > 0.8 - completely consistent with previous constraints - are strongly disfavoured by our independent constraints from BH abundance. Such range of parameters corresponds to Quintom DDE models, with w crossing -1 starting from larger values.
197 - Romeel Dave 2011
Herschel has opened new windows into studying the evolution of rapidly star-forming galaxies out to high redshifts. Todays massive starbursts are characterized by star formation rates (SFRs) of 100+ Mo/yr and display a chaotic morphology and nucleated star formation indicative of a major merger. At z~2, galaxies of similar mass and SFR are characterized by ordered rotation and distributed star formation. The emerging cold accretion paradigm provides an intuitive understanding for such differences. In it, halo accretion rates govern the supply of gas into star-forming regions, modulated by strong outflows. The high accretion rates at high-z drive more rapid star formation, while also making disks thicker and clumpier; the clumps are expected to be short-lived in the presence of strong galactic outflows as observed. Hence equivalently rapid star-formers at high redshift are not analogous to local merger-driven starbursts, but rather to local disks with highly enhanced accretion rates.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا