Do you want to publish a course? Click here

Rapidly Star-forming Galaxies At High Redshifts

194   0   0.0 ( 0 )
 Added by Romeel Dave'
 Publication date 2011
  fields Physics
and research's language is English
 Authors Romeel Dave




Ask ChatGPT about the research

Herschel has opened new windows into studying the evolution of rapidly star-forming galaxies out to high redshifts. Todays massive starbursts are characterized by star formation rates (SFRs) of 100+ Mo/yr and display a chaotic morphology and nucleated star formation indicative of a major merger. At z~2, galaxies of similar mass and SFR are characterized by ordered rotation and distributed star formation. The emerging cold accretion paradigm provides an intuitive understanding for such differences. In it, halo accretion rates govern the supply of gas into star-forming regions, modulated by strong outflows. The high accretion rates at high-z drive more rapid star formation, while also making disks thicker and clumpier; the clumps are expected to be short-lived in the presence of strong galactic outflows as observed. Hence equivalently rapid star-formers at high redshift are not analogous to local merger-driven starbursts, but rather to local disks with highly enhanced accretion rates.



rate research

Read More

The existence of massive ($10^{11}$ solar masses) elliptical galaxies by redshift z~4 (when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z>6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z>6 are, with only one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than $10^9$ solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([CII] at a wavelength of 158 micrometres) in four galaxies at z>6 that are companions of quasars, with velocity offsets of less than 600 kilometers per second and linear offsets of less than 600 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [CII] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [CII] brightness, linewidth and implied dynamical masses, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of twenty-five z>6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [CII] luminosity function, then they can account for the population of massive elliptical galaxies at z~4 in terms of cosmic space density.
This paper presents a compilation of clustering results taken from the literature for galaxies with highly enhanced (SFR [30-10^3] Msun/yr) star formation activity observed in the redshift range z=[0-3]. We show that, irrespective of the selection technique and only very mildly depending on the star forming rate, the clustering lengths of these objects present a sharp increase of about a factor 3 between z~1 and z~2, going from values of ~5 Mpc to about 15 Mpc and higher. This behaviour is reflected in the trend of the masses of the dark matter hosts of star-forming galaxies which increase from ~10^11.5 Msun to ~10^13.5 Msun between z~1 and z~2. Our analysis shows that galaxies which actively form stars at high redshifts are not the same population of sources we observe in the more local universe. In fact, vigorous star formation in the early universe is hosted by very massive structures, while for z~1 a comparable activity is encountered in much smaller systems, consistent with the down-sizing scenario. The available clustering data can hardly be reconciled with merging as the main trigger for intense star formation activity at high redshifts. We further argue that, after a characteristic time-scale of ~1 Gyr, massive star-forming galaxies at z>~2 evolve into z<~1.5 passive galaxies with large (Mstellar=[10^11 - 10^12] Msun) stellar masses.
123 - Jian-Min Wang 2009
Motivated by Genzel et al.s observations of high-redshift star-forming galaxies, containing clumpy and turbulent rings or disks, we build a set of equations describing the dynamical evolution of gaseous disks with inclusion of star formation and its feedback. Transport of angular momentum is due to turbulent viscosity induced by supernova explosions in the star formation region. Analytical solutions of the equations are found for the initial cases of a gaseous ring and the integrated form for a gaseous disk, respectively. For a ring with enough low viscosity, it evolves in a slow processes of gaseous diffusion and star formation near the initial radius. For a high viscosity, the ring rapidly diffuses in the early phase. The diffusion drives the ring into a region with a low viscosity and start the second phase undergoing pile-up of gas at a radius following the decreased viscosity torque. The third is a sharply deceasing phase because of star formation consumption of gas and efficient transportation of gas inward forming a stellar disk. We apply the model to two $zsim 2$ galaxies BX 482 and BzK 6004, and find that they are undergoing a decline in their star formation activity.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be identified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
126 - D. Sobral 2009
New results from a large survey of H-alpha emission-line galaxies at z=0.84 using WFCAM/UKIRT and a custom narrow-band filter in the J band are presented as part of the HiZELS survey. Reaching an effective flux limit of 1e-16 erg/s/cm^2 in a comoving volume of 1.8e5 Mpc^3, this represents the largest and deepest survey of its kind ever done at z~1. There are 1517 potential line emitters detected across 1.4 sq.deg of the COSMOS and UKIDSS UDS fields, of which 743 are selected as H-alpha emitters. These are used to calculate the H-alpha luminosity function, which is well-fitted by a Schechter function with phi*=10^(-1.92+-0.10) Mpc^-3, L*=10^(42.26+-0.05)erg/s, and alpha=-1.65+-0.15. The integrated star formation rate density (SFRD) at z=0.845 is 0.15+-0.01 M_sun/yr/Mpc^3. The results robustly confirm a strong evolution of SFRD from the present day out to z~1 and then flattening to z~2, using a single star-formation indicator. Out to z~1, both the characteristic luminosity and space density of the H-alpha emitters increase significantly; at higher redshifts, L* continues to increase, but phi* decreases. The z=0.84 H-alpha emitters are mostly disk galaxies (82+-3%), while 28+-4% of the sample show signs of merger activity and contribute ~20% to the total SFRD. Irregulars and mergers dominate the H-alpha luminosity function above L*, while disks are dominant at fainter luminosities. These results demonstrate that it is the evolution of normal disk galaxies that drives the strong increase in the SFRD from the current epoch to z~1, although the continued strong evolution of L* beyond z=1 suggests an increasing importance of merger activity at higher redshifts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا