No Arabic abstract
We present a new versatile building block for deep point cloud processing architectures that is equally suited for diverse tasks. This building block combines the ideas of spatial transformers and multi-view convolutional networks with the efficiency of standard convolutional layers in two and three-dimensional dense grids. The new block operates via multiple parallel heads, whereas each head differentiably rasterizes feature representations of individual points into a low-dimensional space, and then uses dense convolution to propagate information across points. The results of the processing of individual heads are then combined together resulting in the update of point features. Using the new block, we build architectures for both discriminative (point cloud segmentation, point cloud classification) and generative (point cloud inpainting and image-based point cloud reconstruction) tasks. The resulting architectures achieve state-of-the-art performance for these tasks, demonstrating the versatility and universality of the new block for point cloud processing.
Methods for processing point cloud information have seen a great success in collider physics applications. One recent breakthrough in machine learning is the usage of Transformer networks to learn semantic relationships between sequences in language processing. In this work, we apply a modified Transformer network called Point Cloud Transformer as a method to incorporate the advantages of the Transformer architecture to an unordered set of particles resulting from collision events. To compare the performance with other strategies, we study jet-tagging applications for highly-boosted particles.
Exploiting convolutional neural networks for point cloud processing is quite challenging, due to the inherent irregular distribution and discrete shape representation of point clouds. To address these problems, many handcrafted convolution variants have sprung up in recent years. Though with elaborate design, these variants could be far from optimal in sufficiently capturing diverse shapes formed by discrete points. In this paper, we propose PointSeaConv, i.e., a novel differential convolution search paradigm on point clouds. It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling. We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error. As a result, PointSeaNet, a deep network that is sufficient to capture geometric shapes at both convolution level and architecture level, can be searched out for point cloud processing. Extensive experiments strongly evidence that our proposed PointSeaNet surpasses current handcrafted deep models on challenging benchmarks across multiple tasks with remarkable margins.
Most audio processing pipelines involve transformations that act on fixed-dimensional input representations of audio. For example, when using the Short Time Fourier Transform (STFT) the DFT size specifies a fixed dimension for the input representation. As a consequence, most audio machine learning models are designed to process fixed-size vector inputs which often prohibits the repurposing of learned models on audio with different sampling rates or alternative representations. We note, however, that the intrinsic spectral information in the audio signal is invariant to the choice of the input representation or the sampling rate. Motivated by this, we introduce a novel way of processing audio signals by treating them as a collection of points in feature space, and we use point cloud machine learning models that give us invariance to the choice of representation parameters, such as DFT size or the sampling rate. Additionally, we observe that these methods result in smaller models, and allow us to significantly subsample the input representation with minimal effects to a trained model performance.
Point clouds captured in real-world applications are often incomplete due to the limited sensor resolution, single viewpoint, and occlusion. Therefore, recovering the complete point clouds from partial ones becomes an indispensable task in many practical applications. In this paper, we present a new method that reformulates point cloud completion as a set-to-set translation problem and design a new model, called PoinTr that adopts a transformer encoder-decoder architecture for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the point cloud to a sequence of point proxies and employ the transformers for point cloud generation. To facilitate transformers to better leverage the inductive bias about 3D geometric structures of point clouds, we further devise a geometry-aware block that models the local geometric relationships explicitly. The migration of transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Furthermore, we propose two more challenging benchmarks with more diverse incomplete point clouds that can better reflect the real-world scenarios to promote future research. Experimental results show that our method outperforms state-of-the-art methods by a large margin on both the new benchmarks and the existing ones. Code is available at https://github.com/yuxumin/PoinTr
We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naively applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques.