Do you want to publish a course? Click here

Almost universal ternary sums of pentagonal numbers

141   0   0.0 ( 0 )
 Added by Hai-Liang Wu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

For each integer $x$, the $x$-th generalized pentagonal number is denoted by $P_5(x)=(3x^2-x)/2$. Given odd positive integers $a,b,c$ and non-negative integers $r,s$, we employ the theory of ternary quadratic forms to determine when the sum $aP_5(x)+2^rbP_5(y)+2^scP_5(z)$ represents all but finitely many positive integers.

rate research

Read More

78 - Rusen Li 2021
In this paper, we introduce a new type of generalized alternating hyperharmonic numbers $H_n^{(p,r,s_{1},s_{2})}$, and show that Euler sums of the generalized alternating hyperharmonic numbers $H_n^{(p,r,s_{1},s_{2})}$ can be expressed in terms of linear combinations of classical (alternating) Euler sums.
In this note, we extend the definition of multiple harmonic sums and apply their stuffle relations to obtain explicit evaluations of the sums $R_n(p,t)=sum olimits_{m=0}^n m^p H_m^t$, where $H_m$ are harmonic numbers. When $tle 4$ these sums were first studied by Spiess around 1990 and, more recently, by Jin and Sun. Our key step first is to find an explicit formula of a special type of the extended multiple harmonic sums. This also enables us to provide a general structural result of the sums $R_n(p,t)$ for all $tge 0$.
We give an expression of polynomials for higher sums of powers of integers via the higher order Bernoulli numbers.
We present two sets of 12 integers that have the same sets of 4-sums. The proof of the fact that a set of 12 numbers is uniquely determined by the set of its 4-sums published 50 years ago is wrong, and we demonstrate an incorrect calculation in it.
174 - Simon Griffiths 2010
A $k$-sum of a set $Asubseteq mathbb{Z}$ is an integer that may be expressed as a sum of $k$ distinct elements of $A$. How large can the ratio of the number of $(k+1)$-sums to the number of $k$-sums be? Writing $kwedge A$ for the set of $k$-sums of $A$ we prove that [ frac{|(k+1)wedge A|}{|kwedge A|}, le , frac{|A|-k}{k+1} ] whenever $|A|ge (k^{2}+7k)/2$. The inequality is tight -- the above ratio being attained when $A$ is a geometric progression. This answers a question of Ruzsa.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا