Do you want to publish a course? Click here

Differentiable Joint Pruning and Quantization for Hardware Efficiency

67   0   0.0 ( 0 )
 Added by Ying Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a differentiable joint pruning and quantization (DJPQ) scheme. We frame neural network compression as a joint gradient-based optimization problem, trading off between model pruning and quantization automatically for hardware efficiency. DJPQ incorporates variational information bottleneck based structured pruning and mixed-bit precision quantization into a single differentiable loss function. In contrast to previous works which consider pruning and quantization separately, our method enables users to find the optimal trade-off between both in a single training procedure. To utilize the method for more efficient hardware inference, we extend DJPQ to integrate structured pruning with power-of-two bit-restricted quantization. We show that DJPQ significantly reduces the number of Bit-Operations (BOPs) for several networks while maintaining the top-1 accuracy of original floating-point models (e.g., 53x BOPs reduction in ResNet18 on ImageNet, 43x in MobileNetV2). Compared to the conventional two-stage approach, which optimizes pruning and quantization independently, our scheme outperforms in terms of both accuracy and BOPs. Even when considering bit-restricted quantization, DJPQ achieves larger compression ratios and better accuracy than the two-stage approach.



rate research

Read More

With the growth of interest in the attack and defense of deep neural networks, researchers are focusing more on the robustness of applying them to devices with limited memory. Thus, unlike adversarial training, which only considers the balance between accuracy and robustness, we come to a more meaningful and critical issue, i.e., the balance among accuracy, efficiency and robustness (AER). Recently, some related works focused on this issue, but with different observations, and the relations among AER remain unclear. This paper first investigates the robustness of pruned models with different compression ratios under the gradual pruning process and concludes that the robustness of the pruned model drastically varies with different pruning processes, especially in response to attacks with large strength. Second, we test the performance of mixing the clean data and adversarial examples (generated with a prescribed uniform budget) into the gradual pruning process, called adversarial pruning, and find the following: the pruned models robustness exhibits high sensitivity to the budget. Furthermore, to better balance the AER, we propose an approach called blind adversarial pruning (BAP), which introduces the idea of blind adversarial training into the gradual pruning process. The main idea is to use a cutoff-scale strategy to adaptively estimate a nonuniform budget to modify the AEs used during pruning, thus ensuring that the strengths of AEs are dynamically located within a reasonable range at each pruning step and ultimately improving the overall AER of the pruned model. The experimental results obtained using BAP for pruning classification models based on several benchmarks demonstrate the competitive performance of this method: the robustness of the model pruned by BAP is more stable among varying pruning processes, and BAP exhibits better overall AER than adversarial pruning.
Using Intels Loihi neuromorphic research chip and ABRs Nengo Deep Learning toolkit, we analyze the inference speed, dynamic power consumption, and energy cost per inference of a two-layer neural network keyword spotter trained to recognize a single phrase. We perform comparative analyses of this keyword spotter running on more conventional hardware devices including a CPU, a GPU, Nvidias Jetson TX1, and the Movidius Neural Compute Stick. Our results indicate that for this inference application, Loihi outperforms all of these alternatives on an energy cost per inference basis while maintaining equivalent inference accuracy. Furthermore, an analysis of tradeoffs between network size, inference speed, and energy cost indicates that Loihis comparative advantage over other low-power computing devices improves for larger networks.
177 - Nicolo Colombo , Yang Gao 2021
We propose a new gradient-based approach for extracting sub-architectures from a given large model. Contrarily to existing pruning methods, which are unable to disentangle the network architecture and the corresponding weights, our architecture-pruning scheme produces transferable new structures that can be successfully retrained to solve different tasks. We focus on a transfer-learning setup where architectures can be trained on a large data set but very few data points are available for fine-tuning them on new tasks. We define a new gradient-based algorithm that trains architectures of arbitrarily low complexity independently from the attached weights. Given a search space defined by an existing large neural model, we reformulate the architecture search task as a complexity-penalized subset-selection problem and solve it through a two-temperature relaxation scheme. We provide theoretical convergence guarantees and validate the proposed transfer-learning strategy on real data.
We investigate pruning and quantization for deep neural networks. Our goal is to achieve extremely high sparsity for quantized networks to enable implementation on low cost and low power accelerator hardware. In a practical scenario, there are particularly many applications for dense prediction tasks, hence we choose stereo depth estimation as target. We propose a two stage pruning and quantization pipeline and introduce a Taylor Score alongside a new fine-tuning mode to achieve extreme sparsity without sacrificing performance. Our evaluation does not only show that pruning and quantization should be investigated jointly, but also shows that almost 99% of memory demand can be cut while hardware costs can be reduced up to 99.9%. In addition, to compare with other works, we demonstrate that our pruning stage alone beats the state-of-the-art when applied to ResNet on CIFAR10 and ImageNet.
108 - Xue Geng , Jie Fu , Bin Zhao 2019
This paper addresses a challenging problem - how to reduce energy consumption without incurring performance drop when deploying deep neural networks (DNNs) at the inference stage. In order to alleviate the computation and storage burdens, we propose a novel dataflow-based joint quantization approach with the hypothesis that a fewer number of quantization operations would incur less information loss and thus improve the final performance. It first introduces a quantization scheme with efficient bit-shifting and rounding operations to represent network parameters and activations in low precision. Then it restructures the network architectures to form unified modules for optimization on the quantized model. Extensive experiments on ImageNet and KITTI validate the effectiveness of our model, demonstrating that state-of-the-art results for various tasks can be achieved by this quantized model. Besides, we designed and synthesized an RTL model to measure the hardware costs among various quantization methods. For each quantization operation, it reduces area cost by about 15 times and energy consumption by about 9 times, compared to a strong baseline.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا