Do you want to publish a course? Click here

Dark Matter Particle in QCD

85   0   0.0 ( 0 )
 Added by Glennys R. Farrar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the possibility that the Dark Matter particle is a stable, neutral, as-yet-undiscovered hadron in the standard model. The existence of a compact color-flavor-spin singlet sexaquark (S, uuddss) with mass ~2m_p, is compatible with current knowledge. The S interacts with baryons primarily via a Yukawa interaction of coupling strength alpha_SN, mediated by omega and phi vector mesons having mass ~1 GeV. If it exists, the S is a very attractive DM candidate. The relic abundance of S Dark Matter (SDM) is established when the Universe transitions from the quark-gluon plasma to the hadronic phase at ~150 MeV and is in remarkable agreement with the observed Omega_DM/Omega_b = 5.3+-0.1; this is a no-free-parameters result because the relevant parameters are known from QCD. Survival of this relic abundance to low temperature requires the breakup amplitude gtilde <~ 2 10^-6, comfortably compatible with theory expectations and observational bounds because the breakup amplitude is dynamically suppressed and many orders of magnitude smaller, as we show. The scattering cross section can differ by orders of magnitude from Born approximation, depending on alpha_SN, requiring reanalysis of observational limits. We use direct detection experiments and cosmological constraints to determine the allowed region of alpha_SN. For a range of allowed values, we predict exotic nuclear isotopes at a detectable level with mass offset ~2 amu. The most promising approaches for detecting the sexaquark in accelerator experiments are to search for a long-interaction-length neutral particle component in the central region of relativistic heavy ion collisions or using a beam-dump setup, and to search for evidence of missing particle production characterized by unbalanced baryon number and strangeness using Belle-II or possibly GLUEX at J-Lab.



rate research

Read More

In this talk, we discuss the physics modelling of particle spectra arising from dark matter (DM) annihilation or decay. In the context of the indirect searches of DM, the final state products will, in general, undergo a set of complicated processes such as resonance decays, QED/QCD radiation, hadronisation and hadron decays. This set of processes lead to stable particles (photons, positrons, anti-protons, and neutrinos among others) which travel for very long distances before reaching the detectors. The modelling of their spectra contains some uncertainties which are often neglected in the relevant analyses. We discuss the sources of these uncertainties and estimate their impact on photon energy spectra for benchmark DM scenarios with $m_chi in [10, 1000],$GeV. Instructions for how to retrieve complete tables from Zenodo are also provided.
129 - A. Ringwald 2013
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-interaction (analogous to the $phi$-K-K system) and thermal freeze-out. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the $Upsilon(4S)$-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while making use of lattice results to determine feasibility.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا