No Arabic abstract
It has recently been suggested that at the post-inflationary stage of the mixed Higgs-$R^2$ model of inflation efficient particle production can arise from the tachyonic instability of the Higgs field. It might complete the preheating of the Universe if appropriate conditions are satisfied, especially in the Higgs-like regime. In this paper, we study this behavior in more depth, including the conditions for occurrence, analytical estimates for the maximal efficiency, and the necessary degree of fine-tuning among the model parameters to complete preheating by this effect. We find that the parameter sets that cause the most efficient tachyonic instabilities obey simple laws in both the Higgs-like regime and the $R^2$-like regime, respectively. We then estimate the efficiency of this instability. In particular, even in the deep $R^2$-like regime with a small non-minimal coupling, this effect is strong enough to complete preheating although a severe fine-tuning is required among the model parameters. We also estimate how much fine-tuning is needed to complete preheating by this effect. It is shown that the fine-tuning of parameters for the sufficient particle production is at least $ < mathcal{O}(0.1) $ in the deep Higgs-like regime with a large scalaron mass, while it is more severe $sim {cal O}(10^{-4})-{cal O}(10^{-5})$ in the $R^2$-like regime with a small non-minimal coupling.
The preheating process in the mixed Higgs-$ R^2 $ model has been investigated in depth recently, but the analysis of perturbative reheating is still missing. In this paper, we discuss the effect of perturbative decay during (p)reheating in this model. It is shown that perturbative decay can play an important role throughout the whole reheating process. Depending on the model parameters, perturbative decay can affect different stages of the reheating. We study the perturbative reheating with and without the presence of early preheating stage, and calculate the reheating temperature and the duration of the whole perturbative process. We find that the detail of the early preheating stage may not affect the final reheating temperature while it can affect the number of e-folds of reheating.
We study preheating in the Palatini formalism with a quadratic inflaton potential and an added $alpha R^2$ term. In such models, the oscillating inflaton field repeatedly returns to the plateau of the Einstein frame potential, on which the tachyonic instability fragments the inflaton condensate within less than an e-fold. We find that tachyonic preheating takes place when $alpha gtrsim 10^{13}$ and that the energy density of the fragmented field grows with the rate $Gamma/H approx 0.011 times alpha^{0.31}$. The model extends the family of plateau models with similar preheating behaviour. Although it contains non-canonical quartic kinetic terms in the Einstein frame, we show that, in the first approximation, these can be neglected during both preheating and inflation.
We study thermal equilibration after preheating in inflationary cosmology, which is an important step towards a comprehensive understanding of cosmic thermal history. By noticing that the problem is parallel to thermalization after a relativistic heavy ion collision, we make use of the methods developed in this context and that seek for an analytical approach to the Boltzmann equation. In particular, an exact solution for number-conserving scatterings is available for the distribution function in a Friedmann-Lema^{i}tre-Robertson-Walker metric and can be utilized for the spectral evolution of kinetic equilibration process after preheating. We find that thermal equilibration is almost instantaneous on the time scale of the Hubble time. We also make an explicit prediction for the duration (the number of e-folds of expansion) required for this process of thermal equilibration to complete following the end of inflation.
We study $R^2$-Higgs inflation in a model with two Higgs doublets. The context is the general two Higgs doublet model where the Higgs sector of the Standard Model is extended by an additional Higgs doublet. We first discuss the required inflationary dynamics in this two Higgs doublet model, which includes four scalar fields, in the covariant formalism allowing a nonminimal coupling between the Higgs-squared and the Ricci scalar $R$, as well as the $R^2$ term. We find that the parameter space favored by $R^2$-Higgs inflation requires nearly degenerate $m_mathsf{H}$, $m_A$ and $m_{mathsf{H}^pm}$, where $mathsf{H}$, $A$, and $mathsf{H}^pm$ are the extra CP even, CP odd, and charged Higgs bosons in the general two Higgs doublet model taking renormalization group evolutions of the parameters into account. Discovery of such heavy scalars at the Large Hadron Collider are possible if they are in the sub-TeV mass range. Indirect evidences may also emerge at the LHCb and Belle-II experiments, however, to probe the quasi degenerate mass spectra one would likely require future lepton colliders such as the International Linear Collider and the Future Circular Collider.
In the context of the Palatini formalism of gravity with an $R^{2}$ term, a $phi^{2}$ potential can be consistent with the observed bound on $r$ whilst retaining the successful prediction for $n_{s}$. Here we show that the Palatini $phi^{2} R^2$ inflation model can also solve the super-Planckian inflaton problem of $phi^{2}$ chaotic inflation, and that the model can be consistent with Planck scale-suppressed potential corrections. If $alpha gtrsim 10^{12}$, where $alpha$ is the coefficient of the $R^2$ term, the inflaton in the Einstein frame, $sigma$, remains sub-Planckian throughout inflation. In addition, if $alpha gtrsim 10^{20}$ then the predictions of the model are unaffected by Planck-suppressed potential corrections in the case where there is a broken shift symmetry, and if $alpha gtrsim 10^{32}$ then the predictions are unaffected by Planck-suppressed potential corrections in general. The value of $r$ is generally small, with $r lesssim 10^{-5}$ for $alpha gtrsim 10^{12}$. We calculate the maximum possible reheating temperature, $T_{R;max}$, corresponding to instantaneous reheating. For $alpha approx 10^{32}$, $T_{R; max}$ is approximately $10^{10}$ GeV, with larger values of $T_{R;max}$ for smaller $alpha$. For the case of instantaneous reheating, we show that $n_{s}$ is in agreement with the 2018 Planck results to within 1-$sigma$, with the exception of the $alpha approx 10^{32}$ case, which is close to the 2-$sigma$ lower bound. Following inflation, the inflaton condensate is likely to rapidly fragment and form oscillons. Reheating via inflaton decays to right-handed neutrinos can easily result in instantaneous reheating. We determine the scale of unitarity violation and show that, in general, unitarity is conserved during inflation.