Do you want to publish a course? Click here

Competing Bandits: The Perils of Exploration Under Competition

92   0   0.0 ( 0 )
 Added by Guy Aridor
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Most online platforms strive to learn from interactions with users, and many engage in exploration: making potentially suboptimal choices for the sake of acquiring new information. We study the interplay between exploration and competition: how such platforms balance the exploration for learning and the competition for users. Here users play three distinct roles: they are customers that generate revenue, they are sources of data for learning, and they are self-interested agents which choose among the competing platforms. We consider a stylized duopoly model in which two firms face the same multi-armed bandit problem. Users arrive one by one and choose between the two firms, so that each firm makes progress on its bandit problem only if it is chosen. Through a mix of theoretical results and numerical simulations, we study whether and to what extent competition incentivizes the adoption of better bandit algorithms, and whether it leads to welfare increases for users. We find that stark competition induces firms to commit to a greedy bandit algorithm that leads to low welfare. However, weakening competition by providing firms with some free users incentivizes better exploration strategies and increases welfare. We investigate two channels for weakening the competition: relaxing the rationality of users and giving one firm a first-mover advantage. Our findings are closely related to the competition vs. innovation relationship, and elucidate the first-mover advantage in the digital economy.

rate research

Read More

Most modern systems strive to learn from interactions with users, and many engage in exploration: making potentially suboptimal choices for the sake of acquiring new information. We initiate a study of the interplay between exploration and competition--how such systems balance the exploration for learning and the competition for users. Here the users play three distinct roles: they are customers that generate revenue, they are sources of data for learning, and they are self-interested agents which choose among the competing systems. In our model, we consider competition between two multi-armed bandit algorithms faced with the same bandit instance. Users arrive one by one and choose among the two algorithms, so that each algorithm makes progress if and only if it is chosen. We ask whether and to what extent competition incentivizes the adoption of better bandit algorithms. We investigate this issue for several models of user response, as we vary the degree of rationality and competitiveness in the model. Our findings are closely related to the competition vs. innovation relationship, a well-studied theme in economics.
We empirically study the interplay between exploration and competition. Systems that learn from interactions with users often engage in exploration: making potentially suboptimal decisions in order to acquire new information for future decisions. However, when multiple systems are competing for the same market of users, exploration may hurt a systems reputation in the near term, with adverse competitive effects. In particular, a system may enter a death spiral, when the short-term reputation cost decreases the number of users for the system to learn from, which degrades its performance relative to competition and further decreases its market share. We ask whether better exploration algorithms are incentivized under competition. We run extensive numerical experiments in a stylized duopoly model in which two firms deploy multi-armed bandit algorithms and compete for myopic users. We find that duopoly and monopoly tend to favor a primitive greedy algorithm that does not explore and leads to low consumer welfare, whereas a temporary monopoly (a duopoly with an early entrant) may incentivize better bandit algorithms and lead to higher consumer welfare. Our findings shed light on the first-mover advantage in the digital economy by exploring the role that data can play as a barrier to entry in online markets.
The interplay between exploration and exploitation in competitive multi-agent learning is still far from being well understood. Motivated by this, we study smooth Q-learning, a prototypical learning model that explicitly captures the balance between game rewards and exploration costs. We show that Q-learning always converges to the unique quantal-response equilibrium (QRE), the standard solution concept for games under bounded rationality, in weighted zero-sum polymatrix games with heterogeneous learning agents using positive exploration rates. Complementing recent results about convergence in weighted potential games, we show that fast convergence of Q-learning in competitive settings is obtained regardless of the number of agents and without any need for parameter fine-tuning. As showcased by our experiments in network zero-sum games, these theoretical results provide the necessary guarantees for an algorithmic approach to the currently open problem of equilibrium selection in competitive multi-agent settings.
We study the problem of incentivizing exploration for myopic users in linear bandits, where the users tend to exploit arm with the highest predicted reward instead of exploring. In order to maximize the long-term reward, the system offers compensation to incentivize the users to pull the exploratory arms, with the goal of balancing the trade-off among exploitation, exploration and compensation. We consider a new and practically motivated setting where the context features observed by the user are more informative than those used by the system, e.g., features based on users private information are not accessible by the system. We propose a new method to incentivize exploration under such information gap, and prove that the method achieves both sublinear regret and sublinear compensation. We theoretical and empirically analyze the added compensation due to the information gap, compared with the case that the system has access to the same context features as the user, i.e., without information gap. We also provide a compensation lower bound of our problem.
We study a repeated persuasion setting between a sender and a receiver, where at each time $t$, the sender observes a payoff-relevant state drawn independently and identically from an unknown prior distribution, and shares state information with the receiver, who then myopically chooses an action. As in the standard setting, the sender seeks to persuade the receiver into choosing actions that are aligned with the senders preference by selectively sharing information about the state. However, in contrast to the standard models, the sender does not know the prior, and has to persuade while gradually learning the prior on the fly. We study the senders learning problem of making persuasive action recommendations to achieve low regret against the optimal persuasion mechanism with the knowledge of the prior distribution. Our main positive result is an algorithm that, with high probability, is persuasive across all rounds and achieves $O(sqrt{Tlog T})$ regret, where $T$ is the horizon length. The core philosophy behind the design of our algorithm is to leverage robustness against the senders ignorance of the prior. Intuitively, at each time our algorithm maintains a set of candidate priors, and chooses a persuasion scheme that is simultaneously persuasive for all of them. To demonstrate the effectiveness of our algorithm, we further prove that no algorithm can achieve regret better than $Omega(sqrt{T})$, even if the persuasiveness requirements were significantly relaxed. Therefore, our algorithm achieves optimal regret for the senders learning problem up to terms logarithmic in $T$.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا