No Arabic abstract
In an earlier paper~cite{Luu:2019jmb} we discussed emergence from the context of effective field theories, particularly as related to the fields of particle and nuclear physics. We argued on the side of reductionism and weak emergence. George Ellis has critiqued our exposition in~cite{Ellis:2020vij}, and here we provide our response to his critiques. Many of his critiques are based on incorrect assumptions related to the formalism of effective field theories and we attempt to correct these issues here. We also comment on other statements made in his paper. Important to note is that our response is to his critiques made in archi
Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have reset this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.
Effective Field Theories have been used successfully to provide a bottom-up description of phenomena whose intrinsic degrees of freedom behave at length scales far different from their effective degrees of freedom. An example is the emergent phenomenon of bound nuclei, whose constituents are neutrons and protons, which in turn are themselves composed of more fundamental particles called quarks and gluons. In going from a fundamental description that utilizes quarks and gluons to an effective field theory description of nuclei, the length scales traversed span at least two orders of magnitude. In this article we provide an Effective Field Theory viewpoint on the topic of emergence, arguing on the side of reductionism and weak emergence. We comment on Andersons interpretation of constructionism and its connection to strong emergence.
Effective Quantum Field Theories and QCD Lattice methods have become more and more complementary and mutually supportive in the study of Hard Probes. I present some of the progress that this alliance already delivered and I discuss future opportunities.
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinskys model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways and we study in detail some of these possibilities.
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.