Do you want to publish a course? Click here

Sat2Graph: Road Graph Extraction through Graph-Tensor Encoding

68   0   0.0 ( 0 )
 Added by Songtao He
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Inferring road graphs from satellite imagery is a challenging computer vision task. Prior solutions fall into two categories: (1) pixel-wise segmentation-based approaches, which predict whether each pixel is on a road, and (2) graph-based approaches, which predict the road graph iteratively. We find that these two approaches have complementary strengths while suffering from their own inherent limitations. In this paper, we propose a new method, Sat2Graph, which combines the advantages of the two prior categories into a unified framework. The key idea in Sat2Graph is a novel encoding scheme, graph-tensor encoding (GTE), which encodes the road graph into a tensor representation. GTE makes it possible to train a simple, non-recurrent, supervised model to predict a rich set of features that capture the graph structure directly from an image. We evaluate Sat2Graph using two large datasets. We find that Sat2Graph surpasses prior methods on two widely used metrics, TOPO and APLS. Furthermore, whereas prior work only infers planar road graphs, our approach is capable of inferring stacked roads (e.g., overpasses), and does so robustly.

rate research

Read More

70 - Tong Zhang 2018
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute graphs. Especially, we propose a graph preserving layer to memorize salient nodes of those factorized subgraphs, i.e. cross graph convolution and graph pooling. For cross graph convolution, a parameterized Kronecker sum operation is proposed to generate a conjunctive adjacency matrix characterizing the relationship between every pair of nodes across two subgraphs. Taking this operation, then general graph convolution may be efficiently performed followed by the composition of small matrices, which thus reduces high memory and computational burden. Encapsuling sequence graphs into a recursive learning, the dynamics of graphs can be efficiently encoded as well as the spatial layout of graphs. To validate the proposed TGCNN, experiments are conducted on skeleton action datasets as well as matrix completion dataset. The experiment results demonstrate that our method can achieve more competitive performance with the state-of-the-art methods.
Inferring road attributes such as lane count and road type from satellite imagery is challenging. Often, due to the occlusion in satellite imagery and the spatial correlation of road attributes, a road attribute at one position on a road may only be apparent when considering far-away segments of the road. Thus, to robustly infer road attributes, the model must integrate scattered information and capture the spatial correlation of features along roads. Existing solutions that rely on image classifiers fail to capture this correlation, resulting in poor accuracy. We find this failure is caused by a fundamental limitation -- the limited effective receptive field of image classifiers. To overcome this limitation, we propose RoadTagger, an end-to-end architecture which combines both Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs) to infer road attributes. The usage of graph neural networks allows information propagation on the road network graph and eliminates the receptive field limitation of image classifiers. We evaluate RoadTagger on both a large real-world dataset covering 688 km^2 area in 20 U.S. cities and a synthesized micro-dataset. In the evaluation, RoadTagger improves inference accuracy over the CNN image classifier based approaches. RoadTagger also demonstrates strong robustness against different disruptions in the satellite imagery and the ability to learn complicated inductive rules for aggregating scattered information along the road network.
Natural reading orders of words are crucial for information extraction from form-like documents. Despite recent advances in Graph Convolutional Networks (GCNs) on modeling spatial layout patterns of documents, they have limited ability to capture reading orders of given word-level node representations in a graph. We propose Reading Order Equivariant Positional Encoding (ROPE), a new positional encoding technique designed to apprehend the sequential presentation of words in documents. ROPE generates unique reading order codes for neighboring words relative to the target word given a word-level graph connectivity. We study two fundamental document entity extraction tasks including word labeling and word grouping on the public FUNSD dataset and a large-scale payment dataset. We show that ROPE consistently improves existing GCNs with a margin up to 8.4% F1-score.
In this paper, we consider recommender systems with side information in the form of graphs. Existing collaborative filtering algorithms mainly utilize only immediate neighborhood information and have a hard time taking advantage of deeper neighborhoods beyond 1-2 hops. The main caveat of exploiting deeper graph information is the rapidly growing time and space complexity when incorporating information from these neighborhoods. In this paper, we propose using Graph DNA, a novel Deep Neighborhood Aware graph encoding algorithm, for exploiting deeper neighborhood information. DNA encoding computes approximate deep neighborhood information in linear time using Bloom filters, a space-efficient probabilistic data structure and results in a per-node encoding that is logarithmic in the number of nodes in the graph. It can be used in conjunction with both feature-based and graph-regularization-based collaborative filtering algorithms. Graph DNA has the advantages of being memory and time efficient and providing additional regularization when compared to directly using higher order graph information. We conduct experiments on real-world datasets, showing graph DNA can be easily used with 4 popular collaborative filtering algorithms and consistently leads to a performance boost with little computational and memory overhead.
Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا