Do you want to publish a course? Click here

Giant magneto-birefringence effect and tuneable colouration of 2D crystals suspensions

168   0   0.0 ( 0 )
 Added by Bilu Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the long sought-after goals in manipulation of light through light-matter interactions is the realization of magnetic-field-tuneable colouration, so-called magneto-chromatic effect, which holds great promise for optical, biochemical and medical applications due to its contactless and non-invasive nature. This goal can be achieved by magnetic-field controlled birefringence, where colours are produced by the interference between phase-retarded components of transmitted polarised light. Thus far birefringence-tuneable coloration has been demonstrated using electric field, material chirality and mechanical strain but magnetic field control remained elusive due to either weak magneto-optical response of transparent media or low transmittance to visible light of magnetically responsive media, such as ferrofluids. Here we demonstrate magnetically tuneable colouration of aqueous suspensions of two-dimensional cobalt-doped titanium oxide which exhibit an anomalously large magneto-birefringence effect. The colour of the suspensions can be tuned over more than two wavelength cycles in the visible range by moderate magnetic fields below 0.8 T. We show that such giant magneto-chromatic response is due to particularly large phase retardation (>3 pi) of the polarised light, which in its turn is a combined result of a large Cotton-Mouton coefficient (three orders of magnitude larger than for known liquid crystals), relatively high saturation birefringence (delta n = 2 x 10^-4) and high transparency of our suspensions to visible light. The work opens a new avenue to achieve tuneable colouration through engineered magnetic birefringence and can readily be extended to other magnetic 2D nanocrystals. The demonstrated effect can be used in a variety of magneto-optical applications, including magnetic field sensors, wavelength-tuneable optical filters and see-through printing.



rate research

Read More

Antiferromagnets are promising for magneto-optical light control that could be performed at THz frequencies via excitation of the quasi-antiferromagnetic spin modes. However, most of the antiferromagnetic crystals possess optical anisotropy that is usually treated as an unfavorable condition for the magneto-optical measurements: optical anisotropy is known to diminish the Faraday rotation with respect to the case of the isotropic medium. Here we show that the situation could be quite opposite: a phenomenon of birefringence mediated enhancement of the magneto-optical activity appears if orientation of the incident light linear polarization is chosen properly. The present study relies on the experimental, analytical and numerical studies of iron borate FeBO$_3$ crystals. We demonstrate a significant increase of the magneto-optical activity by more than 10 times for 70$^circ$ angle between light polarization and incidence plane instead of commonly-used p- or s-polarizations. It provides a unique sensitivity to the in-plane magnetization of FeBO$_3$ that is crucial for the pump-probe studies, magneto-optical microscopy and other. The most important practical application of the observed phenomenon is the light modulation with up to 100$%$ efficiency at THz frequencies. The approach is applicable to other types of the birefringent crystals with the magneto-optical response.
Collective behavior widely exists in nature, ranging from the macroscopic cloud of swallows to the microscopic cloud of colloidal particles. The behavior of an individual inside the collective is distinctive from its behavior alone, as it follows its neighbors. The introduction of such collective behavior in two-dimensional (2D) materials may offer new possibilities to achieve desired but unattained properties. Here, we report a highly sensitive magneto-optic effect and transmissive magneto-coloration via introducing collective behavior into magnetic 2D material dispersions. The increase of ionic strength in the dispersion enhances the collective behavior of colloidal particles, giving rise to a magneto-optic Cotton-Mouton coefficient up to 2700 T-2m-1 which is the highest value obtained so far, being three orders of magnitude larger than other known transparent media. We also reveal linearly dependence of magneto-coloration on the concentration and hydration radius of ions. Such linear dependence and the extremely large Cotton-Mouton coefficient cooperatively allow fabrication of giant magneto-birefringent devices for color-centered visual sensing.
100 - Xue-Hua Wang , Yuri S Kivshar , 2004
We obtain a general result for the Lamb shift of excited states of multi-level atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also predict that the position-dependent Lamb shift should extend from a single level to a mini-band for an assemble of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases.
Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR (GGR) method to compute DOS of various gyroid photonic crystals of topological degeneracies.
135 - Jun Wang , Junze Li , Shangui Lan 2018
Two-dimensional (2D) organic-inorganic perovskites have recently attracted increasing attention due to their great environmental stability, remarkable quantum confinement effect and layered characteristic. Heterostructures consisting of 2D layered perovskites are expected to exhibit new physical phenomena inaccessible to the single 2D perovskites and can greatly extend their functionalities for novel electronic and optoelectronic applications. Herein, we develop a novel solution method to synthesize 2D perovskite single-crystals with the centimeter size, high phase purity, controllable junction depth, high crystalline quality and great stability for highly narrow dual-band photodetectors. On the basis of the different lattice constant, solubility and growth rate between different n number, the newly designed synthesis method allows to first grow n=1 perovskite guided by the self-assembled layer of the organic cations at the water-air interface and subsequently n=2 layer is formed via diffusion process. Such growth process provides an efficient away for us to readily obtain 2D perovskite heterostructural single-crystals with various thickness and junction depth by controlling the concentration, reaction temperature and time. Photodetectors based on such heterostructural single crystal plates exhibit extremely low dark current, high on-off current ratio, and highly narrow dual-band spectral response with a full-width at half-maximum of 20 nm at 540 nm and 34 nm at 610 nm. In particular, the synthetic strategy is general for other 2D perovskites and the narrow dual-band spectral response with all full-width at half-maximum below 40 nm can be continuously tuned from red to blue by properly changing the halide compositions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا