No Arabic abstract
Objective: Evaluate the feasibility and potential impacts on hand function using a wearable stimulation device (the VTS Glove) which provides mechanical, vibratory input to the affected limb of chronic stroke survivors. Methods: A double-blind, randomized, controlled feasibility study including sixteen chronic stroke survivors (mean age: 54; 1-13 years post-stroke) with diminished movement and tactile perception in their affected hand. Participants were given a wearable device to take home and asked to wear it for three hours daily over eight weeks. The device intervention was either (1) the VTS Glove, which provided vibrotactile stimulation to the hand, or (2) an identical glove with vibration disabled. Participants were equally randomly assigned to each condition. Hand and arm function were measured weekly at home and in local physical therapy clinics. Results: Participants using the VTS Glove showed significantly improved Semmes-Weinstein monofilament exam, reduction in Modified Ashworth measures in the fingers, and some increased voluntary finger flexion, elbow and shoulder range of motion. Conclusions: Vibrotactile stimulation applied to the disabled limb may impact tactile perception, tone and spasticity, and voluntary range of motion. Wearable devices allow extended application and study of stimulation methods outside of a clinical setting.
Whether transcranial direct current stimulation (tDCS) benefits stroke rehabilitation remains unclear. To investigate how tDCS reorganizes brain circuitry, nineteen post-stroke patients underwent rehabilitation sessions with bi-hemispheric real vs sham tDCS intervention. Resting motor threshold measurements showed tDCS evoked higher excitability in the motor cortex that enhanced the descending conduction from the lesioned primary motor cortex to the target hand muscle. Granger causality analysis further revealed brain circuitry rewiring among the lesioned cerebellum, premotor, and primary motor cortex in the tDCS group compared to the sham owing to the newly formed connections close to the anodal electrode. Rebuilding of these critical pathways was clear via the increase of event related desynchronisation (ERD) and white matter integrity in the same lesioned region. Furthermore, only the tDCS group demonstrated a positive recovery trend in the penumbra regions by the longitudinal functional magnetic resonance imaging (fMRI) analysis. To interpret tDCS mechanism, we introduce a polarized gamma-aminobutyric acid (GABA) theory, where GABAA receptor activity depends on the orientation of dipolar GABA that can be manipulated by tDCS field. Results suggest that tDCS intervention lowers motor excitability via re-orienting GABA, leading to reorganization of the lesioned cortical network, and the motor descending pathway, finally the recovery of motor function.
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems (e.g. stroke). During a physical therapy session, generating personalized feedback is critical to improve patients engagement. However, prior work on socially assistive robotics for physical therapy has mainly utilized pre-defined corrective feedback even if patients have various physical and functional abilities. This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patients exercises to predict the quality of motion and provide patient-specific corrective feedback for personalized interaction of a robot exercise coach.
Rehabilitation assessment is critical to determine an adequate intervention for a patient. However, the current practices of assessment mainly rely on therapists experience, and assessment is infrequently executed due to the limited availability of a therapist. In this paper, we identified the needs of therapists to assess patients functional abilities (e.g. alternative perspective on assessment with quantitative information on patients exercise motions). As a result, we developed an intelligent decision support system that can identify salient features of assessment using reinforcement learning to assess the quality of motion and summarize patient specific analysis. We evaluated this system with seven therapists using the dataset from 15 patient performing three exercises. The evaluation demonstrates that our system is preferred over a traditional system without analysis while presenting more useful information and significantly increasing the agreement over therapists evaluation from 0.6600 to 0.7108 F1-scores ($p <0.05$). We discuss the importance of presenting contextually relevant and salient information and adaptation to develop a human and machine collaborative decision making system.
Stroke is the leading cause of serious and long-term disability worldwide. Some studies have shown that motor imagery (MI) based BCI has a positive effect in poststroke rehabilitation. It could help patients promote the reorganization processes in the damaged brain regions. However, offline motor imagery and conventional online motor imagery with feedback (such as rewarding sounds and movements of an avatar) could not reflect the true intention of the patients. In this study, both virtual limbs and functional electrical stimulation (FES) were used as feedback to provide patients a closed-loop sensorimotor integration for motor rehabilitation. The FES system would activate if the user was imagining hand movement of instructed side. Ten stroke patients (7 male, aged 22-70 years, mean 49.5+-15.1) were involved in this study. All of them participated in BCI-FES rehabilitation training for 4 weeks.The average motor imagery accuracies of the ten patients in the last week were 71.3%, which has improved 3% than that in the first week. Five patients Fugl-Meyer Assessment (FMA) scores have been raised. Patient 6, who has have suffered from stroke over two years, achieved the greatest improvement after rehabilitation training (pre FMA: 20, post FMA: 35). In the aspect of brain patterns, the active patterns of the five patients gradually became centralized and shifted to sensorimotor areas (channel C3 and C4) and premotor area (channel FC3 and FC4).In this study, motor imagery based BCI and FES system were combined to provided stoke patients with a closed-loop sensorimotor integration for motor rehabilitation. Result showed evidences that the BCI-FES system is effective in restoring upper extremities motor function in stroke. In future work, more cases are needed to demonstrate its superiority over conventional therapy and explore the potential role of MI in poststroke rehabilitation.
This paper presents preliminary results of the design, development, and evaluation of a hand rehabilitation glove fabricated using lobster-inspired hybrid design with rigid and soft components for actuation. Inspired by the bending abdomen of lobsters, hybrid actuators are built with serially jointed rigid shells actuated by pressurized soft chambers inside to generate bending motions. Such bio-inspiration absorbs features from the classical rigid-bodied robotics with precisely-defined motion generation, as well as the emerging soft robotics with light-weight, physically safe, and adaptive actuation. The fabrication procedure is described, followed by experiments to mechanically characterize these actuators. Finally, an open-palm glove design integrated with these hybrid actuators is presented for a qualitative case study. A hand rehabilitation system is developed by learning patterns of the sEMG signals from the users forearm to train the assistive glove for hand rehabilitation exercises.