Do you want to publish a course? Click here

AlignNet: Unsupervised Entity Alignment

175   0   0.0 ( 0 )
 Added by Antonia Creswell
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently developed deep learning models are able to learn to segment scenes into component objects without supervision. This opens many new and exciting avenues of research, allowing agents to take objects (or entities) as inputs, rather that pixels. Unfortunately, while these models provide excellent segmentation of a single frame, they do not keep track of how objects segmented at one time-step correspond (or align) to those at a later time-step. The alignment (or correspondence) problem has impeded progress towards using object representations in downstream tasks. In this paper we take steps towards solving the alignment problem, presenting the AlignNet, an unsupervised alignment module.



rate research

Read More

197 - Fangyu Liu , Muhao Chen , Dan Roth 2020
This work studies the use of visual semantic representations to align entities in heterogeneous knowledge graphs (KGs). Images are natural components of many existing KGs. By combining visual knowledge with other auxiliary information, we show that the proposed new approach, EVA, creates a holistic entity representation that provides strong signals for cross-graph entity alignment. Besides, previous entity alignment methods require human labelled seed alignment, restricting availability. EVA provides a completely unsupervised solution by leveraging the visual similarity of entities to create an initial seed dictionary (visual pivots). Experiments on benchmark data sets DBP15k and DWY15k show that EVA offers state-of-the-art performance on both monolingual and cross-lingual entity alignment tasks. Furthermore, we discover that images are particularly useful to align long-tail KG entities, which inherently lack the structural contexts necessary for capturing the correspondences.
Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs, which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvements on several public datasets. Meanwhile, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNNbased methods, we successfully transform the cross-lingual EA problem into the assignment problem. Based on this finding, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments show that our proposed unsupervised method even beats advanced supervised methods across all public datasets and has high efficiency, interpretability, and stability.
We present AlignNet, a model that synchronizes videos with reference audios under non-uniform and irregular misalignments. AlignNet learns the end-to-end dense correspondence between each frame of a video and an audio. Our method is designed according to simple and well-established principles: attention, pyramidal processing, warping, and affinity function. Together with the model, we release a dancing dataset Dance50 for training and evaluation. Qualitative, quantitative and subjective evaluation results on dance-music alignment and speech-lip alignment demonstrate that our method far outperforms the state-of-the-art methods. Project video and code are available at https://jianrenw.github.io/AlignNet.
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.
125 - Xin Mao , Wenting Wang , Huimin Xu 2020
Entity alignment aims to identify equivalent entity pairs from different Knowledge Graphs (KGs), which is essential in integrating multi-source KGs. Recently, with the introduction of GNNs into entity alignment, the architectures of recent models have become more and more complicated. We even find two counter-intuitive phenomena within these methods: (1) The standard linear transformation in GNNs is not working well. (2) Many advanced KG embedding models designed for link prediction task perform poorly in entity alignment. In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. Furthermore, we propose a novel GNNs-based method, Relational Reflection Entity Alignment (RREA). RREA leverages Relational Reflection Transformation to obtain relation specific embeddings for each entity in a more efficient way. The experimental results on real-world datasets show that our model significantly outperforms the state-of-the-art methods, exceeding by 5.8%-10.9% on Hits@1.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا